INVESTIGATION ON WAVE-INDUCED SEABED RESPONSE AROUND A BURIED PIPELINE CONSIDERING COUPLING EFFECT OF PORE PRESSURE ACCUMULATION AND STRESSES
-
摘要: 波浪导致的海床液化是埋置管线失稳的一个重要因素。超静孔隙水压力累积引起的液化深度较深,对海底管线稳定性的影响较大,因此波浪作用下管线-海床系统的累积响应特征一直受到研究者的重点关注。本文基于考虑孔压累积与海床应力耦合发展的数值计算模型,对非线性行进波作用下含埋置管线的海床累积响应特征进行了模拟计算,并与非耦合模型的计算结果进行了对比分析,结果表明,当考虑孔压累积与海床应力的耦合效应时,管线附近累积孔压在水平方向上的不均匀分布会导致海床循环剪应力的增大,从而会极大地促进管线周围海床累积孔压的发展,增大管线的影响范围; 忽略孔压累积与海床应力的耦合效应,会在一定程度上低估管线周围海床的液化深度,不利于管线的安全。Abstract: The wave-induced seabed liquefaction is an important factor that causes instability of submarine pipelines buried in sediments. The accumulated excess pore water pressure may cause deeper soil liquefaction,which leads to severer influence on stability of pipelines. Therefore,many researchers pay their attention to the residual response of seabed-pipeline system under waves. This study uses the numerical model that considers the coupling effect of pore pressure accumulation and seabed stresses and simulates the seabed residual response with a buried pipeline under nonlinear progressive waves. The results are compared with those of the decoupled numerical model. The results have shown that for the case of considering the coupling effect of residual pore pressure and seabed stresses,the non-uniform distribution of residual pore pressure in the vicinity of the pipeline can cause an increase of the cyclic shear stress,which can significantly accelerate the development of residual pore pressure in the associated area and enlarge the influenced range of the pipeline. Neglecting the coupling effect of residual pore pressure and seabed stresses can underestimate the depth of liquefaction around the buried pipeline to some extent,which is conductive to the safety of pipelines.
-
Key words:
- Waves /
- Buried pipeline /
- Residual pore pressure /
- Liquefaction /
- Coupling effect
-
表 1 试验参数
Table 1. Parameters of the flume test
变量名称与单位 数值 海床参数 厚度h/m 0.826 饱和度Sr 0.95 孔隙率n 0.42 泊松比μ 0.33 渗透系数k/m·s-1 1.1×10-3 相对密度Dr 0.5 剪切模量G/N·m-2 6.4×105 密度ρs/kg·m-3 1700 管线参数 埋深e/m 0.167 管线外半径R1/m 0.094 管线内半径R2/m 0.084 泊松比μp 0.32 剪切模量Gp/N·m-2 8×1010 密度ρp/kg·m-3 2700 表 2 数值模型计算参数
Table 2. Parameters of the numerical model
变量名称与单位 数值 波浪参数 波高H/m 3.8 周期T/s 10 水深d/m 15 波长L/m 108.9 海床参数 厚度h/m 40 长度L/m 108.9 饱和度Sr 1 孔隙率n 0.42 泊松比μ 0.33 渗透系数k/m·s-1 5×10-5 相对密度Dr 0.33 剪切模量G/N·m-2 8×106 密度ρs/kg·m-3 1973 管线参数 埋深e/m 2 管径D/m 1.2 泊松比μp 0.32 剪切模量Gp/N·m-2 8×1010 密度ρp/kg·m-3 2300 -
Chang F Q. 2009. Study on mechanism of wave-induced submarine landslide at the Yellow River Estuary, China[D]. Qingdao: Ocean University of China. Cheng A H D, Liu P L F. 1986. Seepage force on a pipeline buried in a poroelastic seabed under wave loadings[J]. Applied Ocean Research, 8 (1): 22-32. doi: 10.1016/S0141-1187(86)80027-X Dunn S L, Vun P L, Chan A H C, et al. 2006. Numerical modeling of wave-induced liquefaction around pipelines[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132 (4): 276-288. doi: 10.1061/(ASCE)0733-950X(2006)132:4(276) Foo C S X, Liao C C, Chen J J. 2019. Two-dimensional numerical study of seabed response around a buried pipeline under wave and current loading[J]. Journal of Marine Science and Engineering, 7(3): 7030066. http://www.mdpi.com/2077-1312/7/3/66/pdf Fu C J, Li G Y, Zhao T L. 2014. On interaction between submarine pipelines and seabed under action of waves[J]. Hydro-Science and Engineering, 12 (6): 100-106. http://www.cqvip.com/QK/93946A/201406/663331225.html Jeng D S, Lin Y S. 1997. Non-linear wave-induced response of porous seabed: A finite element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 21 (1): 15-42. doi: 10.1002/(SICI)1096-9853(199701)21:1<15::AID-NAG856>3.0.CO;2-4 Jeng D S, Zhao H Y. 2015. Two-dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 141(3): 04014042. doi: 10.1061/(ASCE)WW.1943-5460.0000282 Li J J, Guo W Q, Zhang J, et al. 2017. Quantitative assessment of environmental risk for exposed and dangling marine pipeline[J]. Marine Sciences, 41 (10): 10-18. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201710002.htm Li X J, Gao F P, Yan W J, et al. 2009. Wave-induced pore pressure accumulation in porous seabed[J]. Shipbuilding of China, 50 (S): 293-299. Liu X L, Cui H N, Jeng D S, et al. 2019. A coupled mathematical model for accumulation of wave-induced pore water pressure and its application[J]. Coastal Engineering, 154: 103577. doi: 10.1016/j.coastaleng.2019.103577 McDougal W G, Tsai Y T, Liu P L, et al. 1989. Wave-induced pore water pressure accumulation in marine soils[J]. Journal of Offshore Mechanics and Arctic Engineering, 111 (1): 1-11. doi: 10.1115/1.3257133 Okusa S. 1985. Wave-induced stresses in unsaturated submarine sediments[J]. Géotechnique, 35 (4): 517-532. doi: 10.1680/geot.1985.35.4.517 Seed H B, Rahman M S. 1978. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils[J]. Marine Georesources & Geotechnology, 3 (2): 123-150. http://www.onacademic.com/detail/journal_1000036912201410_a0cc.html Sumer B M, Kirca V, Fredsoe J. 2012. Experimental validation of a mathematical model for seabed liquefaction under waves[J]. International Journal of Offshore and Polar Engineering, 22 (2): 133-141. http://orbit.dtu.dk/en/journals/international-journal-of-offshore-and-polar-engineering(343491fb-f56e-45f3-bf2f-555e483873fc)/publications.pdf?nofollow=true&rendering=short Tong L L, Zhang J S, Sun K, et al. 2018. Experimental study on soil response and wave attenuation in a silt bed[J]. Ocean Engineering, 160 : 105-118. doi: 10.1016/j.oceaneng.2018.04.027 Turcotte B R, Liu P L F, Kulhawy F H. 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction[R]. Ithaca, New York: School of Civil and Environmental Engineering, Cornell University. Wang X W, Zhang J M, Li C F. 2018. Wave-induced interaction of saturated sandy seabed with pipeline[J]. Rock and Soil Mechanics, 39 (7): 2499-2508, 2554. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201807022.htm Ye J H, Jeng D S. 2015. Numerical simulation of the wave-induced dynamic response of poro-elastoplastic seabed foundations and a composite breakwater[J]. Applied Mathematical Modelling, 39 (1): 322-347. doi: 10.1016/j.apm.2014.05.031 Zen K, Yamazaki H. 1990. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 30 (4): 90-104. doi: 10.3208/sandf1972.30.4_90 Zhang Y T. 2009. Prevention measures on potential safety hazard of submarine pipeline subjected to seabed soils effect in Chengdao Oilfield[J]. Shipbuilding of China, 50 (S): 931-934. Zhao H Y, Jeng D S, Guo Z, et al. 2014. Two-dimensional model for pore pressure accumulations in the vicinity of a buried pipeline[J]. Journal of Offshore Mechanics and Arctic Engineering, 136(4): 042001. doi: 10.1115/1.4027955 常方强. 2009. 波浪作用下黄河口海底滑坡研究[D]. 青岛: 中国海洋大学. 付长静, 李国英, 赵天龙. 2014. 海底管道与海床相互作用研究综述[J]. 水利水运工程学报, 12 (6): 100-106. doi: 10.3969/j.issn.1009-640X.2014.06.015 李佳峻, 郭伟其, 张杰, 等. 2017. 海底管道出露悬空环境风险的定量评价研究[J]. 海洋科学, 41 (10): 10-18. doi: 10.11759/hykx20170417001 李小均, 高福平, 鄢文杰, 等. 2009. 波浪作用下海床土体的孔隙水压累积响应[J]. 中国造船, 50 (S): 293-299. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZC200911001049.htm 王小雯, 张建民, 李焯芬. 2018. 波浪作用下饱和砂质海床土体与管线相互作用规律研究[J]. 岩土力学, 39 (7): 2499-2508, 2554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807022.htm 张衍涛. 2009. 海床土导致的埕岛油田海底管线安全隐患与防护对策[J]. 中国造船, 50 (S): 931-934. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZC200911002075.htm -