考虑波致孔压累积与应力耦合效应的埋置管线周围海床响应特征与机制分析

刘小丽 李乔花 廖周全

刘小丽, 李乔花, 廖周全.2021.考虑波致孔压累积与应力耦合效应的埋置管线周围海床响应特征与机制分析[J].工程地质学报, 29(6): 1770-1778. doi: 10.13544/j.cnki.jeg.2021-0713
引用本文: 刘小丽, 李乔花, 廖周全.2021.考虑波致孔压累积与应力耦合效应的埋置管线周围海床响应特征与机制分析[J].工程地质学报, 29(6): 1770-1778. doi: 10.13544/j.cnki.jeg.2021-0713
Liu Xiaoli, Li Qiaohua, Liao Zhouquan. 2021. Investigation on wave-induced seabed response around a buried pipeline considering coupling effect of pore pressure accumulation and stresses [J]. Joumal of Engineering Geology, 29(6): 1770-1778. doi: 10.13544/j.cnki.jeg.2021-0713
Citation: Liu Xiaoli, Li Qiaohua, Liao Zhouquan. 2021. Investigation on wave-induced seabed response around a buried pipeline considering coupling effect of pore pressure accumulation and stresses [J]. Joumal of Engineering Geology, 29(6): 1770-1778. doi: 10.13544/j.cnki.jeg.2021-0713

考虑波致孔压累积与应力耦合效应的埋置管线周围海床响应特征与机制分析

doi: 10.13544/j.cnki.jeg.2021-0713
基金项目: 

山东省重点研发计划项目 2019GSF111055

详细信息
    通讯作者:

    刘小丽(1974-),女,博士,副教授,主要从事海洋地质灾害方面的科研与教学工作. E-mail: LXL4791@ouc.edu.cn

  • 中图分类号: P756.2

INVESTIGATION ON WAVE-INDUCED SEABED RESPONSE AROUND A BURIED PIPELINE CONSIDERING COUPLING EFFECT OF PORE PRESSURE ACCUMULATION AND STRESSES

Funds: 

the Key Research and Development Program of Shandong Province 2019GSF111055

  • 摘要: 波浪导致的海床液化是埋置管线失稳的一个重要因素。超静孔隙水压力累积引起的液化深度较深,对海底管线稳定性的影响较大,因此波浪作用下管线-海床系统的累积响应特征一直受到研究者的重点关注。本文基于考虑孔压累积与海床应力耦合发展的数值计算模型,对非线性行进波作用下含埋置管线的海床累积响应特征进行了模拟计算,并与非耦合模型的计算结果进行了对比分析,结果表明,当考虑孔压累积与海床应力的耦合效应时,管线附近累积孔压在水平方向上的不均匀分布会导致海床循环剪应力的增大,从而会极大地促进管线周围海床累积孔压的发展,增大管线的影响范围; 忽略孔压累积与海床应力的耦合效应,会在一定程度上低估管线周围海床的液化深度,不利于管线的安全。
  • 图  1  波浪作用下含埋置管线海床计算示意图

    Figure  1.  Sketch of the wave-induced seabed response around a buried pipeline

    图  2  网格剖分图

    Figure  2.  Mesh grid

    图  3  波浪作用下埋置管线周围孔压对比图

    Figure  3.  Comparison of wave-induced pore pressure around a buried pipeline

    图  4  海床初始竖向有效应力分布图

    Figure  4.  Isosurface of the initial vertical effective stress

    图  5  初始平均有效应力分布图

    Figure  5.  Isosurface of the initial mean effective stress

    图  6  不同位置处累积孔压随时间变化对比图

    Figure  6.  Comparison of development of residual pore pressures at different locations

    图  7  管线附近海床的累积孔压水平分布图

    Figure  7.  Lateral distribution of residual pore pressure in the vicinity of the pipeline

    图  8  管线中心竖向截面与海床远端竖向截面的累积孔压分布对比图

    Figure  8.  Comparison of residual pore pressures along the vertical section across the central of the pipeline and that in the far field

    图  9  累积孔压沿管土交界面分布对比图

    Figure  9.  Comparison of residual pore pressures along the interface of pipeline and soils

    图  10  海床剪应变水平分布图

    Figure  10.  Lateral distribution of soil shear strain

    图  11  远点处海床平均有效正应力差值

    Figure  11.  Difference of the mean effective stress in the far field

    图  12  管线埋深2m时海床的液化区分布图

    Figure  12.  Liquefaction zone of the seabed around the pipeline at a buried depth of 2m

    图  13  管线埋深为3m时海床的液化区分布图

    Figure  13.  Liquefaction zone of the seabed around the pipeline at a buried depth of 3m

    表  1  试验参数

    Table  1.   Parameters of the flume test

    变量名称与单位 数值
    海床参数 厚度h/m 0.826
    饱和度Sr 0.95
    孔隙率n 0.42
    泊松比μ 0.33
    渗透系数k/m·s-1 1.1×10-3
    相对密度Dr 0.5
    剪切模量G/N·m-2 6.4×105
    密度ρs/kg·m-3 1700
    管线参数 埋深e/m 0.167
    管线外半径R1/m 0.094
    管线内半径R2/m 0.084
    泊松比μp 0.32
    剪切模量Gp/N·m-2 8×1010
    密度ρp/kg·m-3 2700
    下载: 导出CSV

    表  2  数值模型计算参数

    Table  2.   Parameters of the numerical model

    变量名称与单位 数值
    波浪参数 波高H/m 3.8
    周期T/s 10
    水深d/m 15
    波长L/m 108.9
    海床参数 厚度h/m 40
    长度L/m 108.9
    饱和度Sr 1
    孔隙率n 0.42
    泊松比μ 0.33
    渗透系数k/m·s-1 5×10-5
    相对密度Dr 0.33
    剪切模量G/N·m-2 8×106
    密度ρs/kg·m-3 1973
    管线参数 埋深e/m 2
    管径D/m 1.2
    泊松比μp 0.32
    剪切模量Gp/N·m-2 8×1010
    密度ρp/kg·m-3 2300
    下载: 导出CSV
  • Chang F Q. 2009. Study on mechanism of wave-induced submarine landslide at the Yellow River Estuary, China[D]. Qingdao: Ocean University of China.
    Cheng A H D, Liu P L F. 1986. Seepage force on a pipeline buried in a poroelastic seabed under wave loadings[J]. Applied Ocean Research, 8 (1): 22-32. doi: 10.1016/S0141-1187(86)80027-X
    Dunn S L, Vun P L, Chan A H C, et al. 2006. Numerical modeling of wave-induced liquefaction around pipelines[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132 (4): 276-288. doi: 10.1061/(ASCE)0733-950X(2006)132:4(276)
    Foo C S X, Liao C C, Chen J J. 2019. Two-dimensional numerical study of seabed response around a buried pipeline under wave and current loading[J]. Journal of Marine Science and Engineering, 7(3): 7030066. http://www.mdpi.com/2077-1312/7/3/66/pdf
    Fu C J, Li G Y, Zhao T L. 2014. On interaction between submarine pipelines and seabed under action of waves[J]. Hydro-Science and Engineering, 12 (6): 100-106. http://www.cqvip.com/QK/93946A/201406/663331225.html
    Jeng D S, Lin Y S. 1997. Non-linear wave-induced response of porous seabed: A finite element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 21 (1): 15-42. doi: 10.1002/(SICI)1096-9853(199701)21:1<15::AID-NAG856>3.0.CO;2-4
    Jeng D S, Zhao H Y. 2015. Two-dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 141(3): 04014042. doi: 10.1061/(ASCE)WW.1943-5460.0000282
    Li J J, Guo W Q, Zhang J, et al. 2017. Quantitative assessment of environmental risk for exposed and dangling marine pipeline[J]. Marine Sciences, 41 (10): 10-18. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX201710002.htm
    Li X J, Gao F P, Yan W J, et al. 2009. Wave-induced pore pressure accumulation in porous seabed[J]. Shipbuilding of China, 50 (S): 293-299.
    Liu X L, Cui H N, Jeng D S, et al. 2019. A coupled mathematical model for accumulation of wave-induced pore water pressure and its application[J]. Coastal Engineering, 154: 103577. doi: 10.1016/j.coastaleng.2019.103577
    McDougal W G, Tsai Y T, Liu P L, et al. 1989. Wave-induced pore water pressure accumulation in marine soils[J]. Journal of Offshore Mechanics and Arctic Engineering, 111 (1): 1-11. doi: 10.1115/1.3257133
    Okusa S. 1985. Wave-induced stresses in unsaturated submarine sediments[J]. Géotechnique, 35 (4): 517-532. doi: 10.1680/geot.1985.35.4.517
    Seed H B, Rahman M S. 1978. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils[J]. Marine Georesources & Geotechnology, 3 (2): 123-150. http://www.onacademic.com/detail/journal_1000036912201410_a0cc.html
    Sumer B M, Kirca V, Fredsoe J. 2012. Experimental validation of a mathematical model for seabed liquefaction under waves[J]. International Journal of Offshore and Polar Engineering, 22 (2): 133-141. http://orbit.dtu.dk/en/journals/international-journal-of-offshore-and-polar-engineering(343491fb-f56e-45f3-bf2f-555e483873fc)/publications.pdf?nofollow=true&rendering=short
    Tong L L, Zhang J S, Sun K, et al. 2018. Experimental study on soil response and wave attenuation in a silt bed[J]. Ocean Engineering, 160 : 105-118. doi: 10.1016/j.oceaneng.2018.04.027
    Turcotte B R, Liu P L F, Kulhawy F H. 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction[R]. Ithaca, New York: School of Civil and Environmental Engineering, Cornell University.
    Wang X W, Zhang J M, Li C F. 2018. Wave-induced interaction of saturated sandy seabed with pipeline[J]. Rock and Soil Mechanics, 39 (7): 2499-2508, 2554. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201807022.htm
    Ye J H, Jeng D S. 2015. Numerical simulation of the wave-induced dynamic response of poro-elastoplastic seabed foundations and a composite breakwater[J]. Applied Mathematical Modelling, 39 (1): 322-347. doi: 10.1016/j.apm.2014.05.031
    Zen K, Yamazaki H. 1990. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 30 (4): 90-104. doi: 10.3208/sandf1972.30.4_90
    Zhang Y T. 2009. Prevention measures on potential safety hazard of submarine pipeline subjected to seabed soils effect in Chengdao Oilfield[J]. Shipbuilding of China, 50 (S): 931-934.
    Zhao H Y, Jeng D S, Guo Z, et al. 2014. Two-dimensional model for pore pressure accumulations in the vicinity of a buried pipeline[J]. Journal of Offshore Mechanics and Arctic Engineering, 136(4): 042001. doi: 10.1115/1.4027955
    常方强. 2009. 波浪作用下黄河口海底滑坡研究[D]. 青岛: 中国海洋大学.
    付长静, 李国英, 赵天龙. 2014. 海底管道与海床相互作用研究综述[J]. 水利水运工程学报, 12 (6): 100-106. doi: 10.3969/j.issn.1009-640X.2014.06.015
    李佳峻, 郭伟其, 张杰, 等. 2017. 海底管道出露悬空环境风险的定量评价研究[J]. 海洋科学, 41 (10): 10-18. doi: 10.11759/hykx20170417001
    李小均, 高福平, 鄢文杰, 等. 2009. 波浪作用下海床土体的孔隙水压累积响应[J]. 中国造船, 50 (S): 293-299. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZC200911001049.htm
    王小雯, 张建民, 李焯芬. 2018. 波浪作用下饱和砂质海床土体与管线相互作用规律研究[J]. 岩土力学, 39 (7): 2499-2508, 2554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807022.htm
    张衍涛. 2009. 海床土导致的埕岛油田海底管线安全隐患与防护对策[J]. 中国造船, 50 (S): 931-934. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGZC200911002075.htm
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  17
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-30
  • 修回日期:  2021-11-15
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回