FUZZY BAYESIAN NETWORK MODEL BASED ON ANP AND ITS APPLICA ̄TION TO COASTAL ZONE GEOHAZARD RISK ASSESSMENT
-
摘要: 海岸带位于海陆交互地带,其独特的地理、地质和环境条件导致其灾害地质现象发育,地质灾害易发性和危险性高。考虑到海岸带的重要经济和社会属性,开展海岸带的地质灾害风险评价显得极为重要。本文首先建立了基于模糊贝叶斯网络的地质灾害风险评价模型,结合网络层次分析法(ANP)确定模糊贝叶斯网络的条件概率,并简化了贝叶斯网络的结构图谱。在此基础上,以辽东半岛东部海岸带作为研究区,以崩塌、滑坡、地面塌陷、海岸侵蚀和海水入侵等5个主要地质灾害类型作为评价对象,开展了基于ANP-模糊贝叶斯网络模型的地质灾害易发性、危险性和风险性评价,并编制了综合地质灾害风险分布图;结果显示,区内高、较高风险区主要分布于研究区的西南部海岸带,面积为249km2,约占全区面积的9.1%。研究成果可为海岸带国土资源开发、经济建设规划、防灾减灾救灾等提供重要参考,对同类地区的海岸带地质灾害风险评价具有一定借鉴意义。
-
关键词:
- 地质灾害 /
- 风险性评价 /
- 贝叶斯网络模型 /
- 海岸带 /
- 网络层次分析法(ANP)
Abstract: The coastal zone is located in the interaction area between land and sea. Its unique geographical, geological and environmental conditions lead to the frequent occurrence of geological disasters, which are high liability and risk. Considering the important economic and social attributes of the coastal zone, it is very important to carry out a geohazard risk assessment in the coastal zone. In this paper, the geohazard risk assessment model based on fuzzy Bayesian network is established and combined with the Analytic Network Process(ANP), to determine the conditional probability of fuzzy Bayesian network and simplify the Bayesian network structure. On this basis, the coastal zone in the eastern part of the Liaodong peninsula is employed as the study area. Five main types of geohazards including rockfall, landslide, ground subsidence, seawater intrusion and coastal erosion are selected as evaluation objects. Further, the susceptibility evaluation, hazard assessment and risk assessment of geohazards based on the fuzzy Bayesian network model coupling with ANP are carried out. The comprehensive geohazard risk assessment map is also achieved. The results show that the southwestern coastal zone of the study area is the highest or higher risk area. The zone has an area of 249km2 and 9.1% of the total area. The research results can provide an important reference for land and resources development, economic construction planning, disaster prevention and mitigation in the coastal zone, and also have certain reference significance for the risk assessment of geohazards in coastal zones of similar areas.-
Key words:
- Geohazard /
- Risk assessment /
- Bayesian network model /
- Coastal zone /
- Analytic network process(ANP)
-
表 1 崩塌地质灾害的危险性评价指标体系
Table 1. Geohazard assessment index system for rockfall
评价阶段 一级指标 二级指标 分级 地质灾害危险性评价 地质灾害易发性评价 地形地貌 坡度/(°) [0,45]; (45,75]; (75,90] 坡高/m [0,15]; (30,45]; (45,∞) 坡面曲率 (0.35,1]; (-0.35,0.35]; [-1,-0.35] 植被覆盖 (0.67,1]; (0.33,0.67]; [0,0.33] 坡面延伸长度/m [0,50]; (50,100]; (100,∞) 地形湿度因子 [0,10]; (10,15]; (15,∞] 地层岩性 岩土类型 土质-石英岩按硬度划分10个等级 岩层产状 按坡面产状与岩层产状的关系划分5个等级 风化程度 未风化;[微风化,中风化];[强风化,全风化] 地震地质构造 节理裂隙发育/组 [0,1]; (1,3]; (3,∞) 距断层距离/m (500,∞); (200,500]; [0,200] 地震烈度/(°)及峰值加速度/g {6,7},{0.05,0.1,0.15} 水文气象 降雨量/mm [0,400]; (400,600]; (600,∞) 距河流距离/m (500,∞); (200,500]; [0,200] 人类活动 距道路距离/m (500,∞); (200,500]; [0,200] 工程活动 [植被,裸露地面];[居民用地,水库建设];工程用地 危害程度 灾害规模/m3 [0,100],(100,500],(500,∞) 3日连续降雨量/mm [100,120],(120,140],(140,∞) 表 2 易损性评价指标体系
Table 2. Susceptibility evaluation index system
评价阶段 指标 分级 易损性性评价 人口密度/人/km2 [0,100]; (100,1000],(1000,∞] 人均GDP/万元 [0,5]; (5,10]; (10,∞) 道路密度/m·km-2 [0,500]; (500,1000],(1000,∞] 农田密度 [0,0.33]; (0.33,0.67]; (0.67,1] -
Chen J P, Fan L M, Li C, et al. 2014. Mine geological environment impact assessment based on fuzzy comprehensive evaluation and GIS technology[J]. Coal Geology of China, 26 (2): 43-48. Chen J, Fu J Q. 2012. Fire alarm system based on multi-sensor Bayes network[J]. Procedia Engineering, 29 (5): 2551-2555. http://www.onacademic.com/detail/journal_1000035735512210_fa20.html Chen X Y, Ni H Y, Li M H, et al. 2021. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology, 36 (2): 71-78. Dai L X, Xu Q, Fan X M, et al. 2017. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th, 2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 25 (4): 1151-1164. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201704030.htm Fan Z Y, Gou X F, Qin M Y, et al. 2018. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology, 26 (2): 340-347. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201802008.htm Li Y G, Liu X T, Han Z, et al. 2020. Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: A case study of Qingchuan area, China[J]. Applied Sciences, 10(3): 1107. doi: 10.3390/app10031107 Liu C Z. 2019. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology, 27 (1): 88-97. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901010.htm Liu F, Qin S W, Qiao S S, et al. 2019. Slope geological hazards susceptibility evaluation based on neural network model: A case study from Yongji county of Jilin Province[J]. Global Geology, 38 (4): 1166-1176. Liu J L. 2013. Study on risk analysis of large engineering project method based on fuzzy statistical decision theory[D]. Changchun: Jilin University. Luo L G, Pei X J, Gu H, et al. 2020. Risk assessment of geohazards induced by"8 ·8"earthquake based on GIS in Jiuzhaigou scenic area[J]. Journal of Natural Disasters, 29 (3): 193-202. Mao S S, Tang Y C. 2012. Bayesian statistics[M]. Beijing: China Statistics Press: 330. Qi X, Tang C, Chen Z F, et al. 2012. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 21 (5): 33-40. http://www.researchgate.net/publication/286958921_Research_of_geohazards_risk_assessment Song H Y, Liang X R, Pan W S, et al. 2020. Landslide hazards assessment of Duliujiang scenic spot based on GIS[J]. Scientific and Technological Innovation, 36 : 70-73. Wang R Q, Wang X L, Liu H Y, et al. 2019. Identification and main controlling factor analysis of collapse and landslide based on fine DEM—Taking Jiacha-Langxian section of Yarlung Zangbo suture zone as an example[J]. Journal of Engineering Geology, 27 (5): 1146-1152. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905026.htm Wang X, Zhao K, Jiang Y L, et al. 2021. Study on dynamic regionalization model of debris flow susceptibility in Nujiang River Basin based on BP neural network[J]. Industrial Minerals & Processing, 2021-03-25, https://kns.cnki.net/kcms/detail/32.1492.TQ.20210323.1549.002.html. Xiang X Q, Huang R Q. 2000. Risk assessment and risk management for slope geohazares[J]. Journal of Geological Hazards and Environmental Protection, 11 (1): 38-41. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZHB200001007.htm Yang G, Xu P H, Cao C, et al. 2019. Assessment of regional landslide susceptibility absed on combined model of certainty factor method[J]. Journal of Engineering Geology, 27 (5): 1153-1163. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905027.htm Zhang X D. 2018. Study on geological disaster risk assessment based on RS and GIS in Yanchi County, Ningxia[D]. Beijing: China University of Geosciences(Beijing). 陈建平, 范立民, 李成, 等. 2014. 基于模糊综合评判和GIS技术的矿山地质环境影响评价[J]. 中国煤炭地质, 26 (2): 43-48. doi: 10.3969/j.issn.1674-1803.2014.02.10 陈绪钰, 倪化勇, 李明辉, 等. 2021. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学, 36 (2): 71-78. doi: 10.3969/j.issn.1000-811X.2021.02.013 戴岚欣, 许强, 范宣梅, 等. 2017.2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报, 25 (4): 1151-1164. doi: 10.13544/j.cnki.jeg.2017.04.030 樊芷吟, 苟晓峰, 秦明月, 等. 2018. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报, 26 (2): 340-347. doi: 10.13544/j.cnki.jeg.2017-052 刘传正. 2019. 崩塌滑坡灾害风险识别方法初步研究[J]. 工程地质学报, 27 (1): 88-97. doi: 10.13544/j.cnki.jeg.2019-009 刘飞, 秦胜伍, 乔双双, 等. 2019. 基于神经网络模型的斜坡地质灾害易发性评价: 以吉林永吉为例[J]. 世界地质, 38 (4): 1166-1176. doi: 10.3969/j.issn.1004-5589.2019.04.028 刘佳琳. 2013. 模糊统计决策理论基础上的大型工程项目风险评估方法研究[D]. 长春: 吉林大学. 罗路广, 裴向军, 谷虎, 等. 2020. 基于GIS的"8 ·8"九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报, 29 (3): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202003021.htm 茆诗松, 汤银才. 2012. 贝叶斯统计[M]. 北京: 中国统计出版社: 330. 齐信, 唐川, 陈州丰, 等. 2012. 地质灾害风险评价研究[J]. 自然灾害学报, 21 (5): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201205007.htm 宋华艳, 梁兴蓉, 潘网生. 2020. 基于GIS的都柳江风景区滑坡灾害易发性评价[J]. 科学技术创新, 36 : 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX202036030.htm 王瑞琪, 王学良, 刘海洋, 等. 2019. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析———以雅鲁藏布江缝合带加查-朗县段为例[J]. 工程地质学报, 27 (5): 1146-1152. doi: 10.13544/j.cnki.jeg.2019056 王鑫, 赵康, 蒋叶林, 等. 2021. 基于BP神经网络的怒江流域泥石流易发性动态区划模型研究[J/OL]. 化工矿物与加工, 2021-03-25, https://kns.cnki.net/kcms/detail/32.1492.TQ.20210323.1549.002.html. 向喜琼, 黄润秋. 2000. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护, 11 (1): 38-41. doi: 10.3969/j.issn.1006-4362.2000.01.008 杨光, 徐佩华, 曹琛, 等. 2019. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报, 27 (5): 1153-1163. doi: 10.13544/j.cnki.jeg.2019018 张晓东. 2018. 基于遥感和GIS的宁夏盐池县地质灾害风险评价研究[D]. 北京: 中国地质大学(北京). -