水合物开采中深海古滑坡体的再启滑机制初探

谭琳 刘芳

谭琳, 刘芳. 2021. 水合物开采中深海古滑坡体的再启滑机制初探[J]. 工程地质学报,29(6): 1907-1915. doi: 10.13544/jcnki.jeg.2021-0716
引用本文: 谭琳, 刘芳. 2021. 水合物开采中深海古滑坡体的再启滑机制初探[J]. 工程地质学报,29(6): 1907-1915. doi: 10.13544/jcnki.jeg.2021-0716
Tan Lin, Liu Fang. 2021. The reacivation meehanism of ancienocean land. lides during hydrate proluetion: A preliminary studly [J]. Journal ofEngineering Geology, 29(6): 1907-1915. doi: 10.13544/j.cnki.jeg.2021-0716
Citation: Tan Lin, Liu Fang. 2021. The reacivation meehanism of ancienocean land. lides during hydrate proluetion: A preliminary studly [J]. Journal ofEngineering Geology, 29(6): 1907-1915. doi: 10.13544/j.cnki.jeg.2021-0716

水合物开采中深海古滑坡体的再启滑机制初探

doi: 10.13544/j.cnki.jeg.2021-0716
基金项目: 

国家自然科学基金 41877241

企业创新发展联合基金集成项目 U20B6005

详细信息
    作者简介:

    谭琳(1988-),女,博士后,主要从事能源岩土工程与灾害评价及控制的研究. E-mail: tanlin@tongji.edu.cn

    通讯作者:

    刘芳(1978-),女,博士,教授,博士生导师,主要从事能源岩土工程的教学与研究. E-mail: liufang@tongji.edu.cn

  • 中图分类号: P642.22

THE REACTIVATION MECHANISM OF ANCIENT OCEAN LANDSLIDES DURING HYDRATE PRODUCTION: A PRELIMINARY STUDY

Funds: 

the National Natural Science Foundation of China 41877241

the Joint Foundation Integration Project for Enterprise Innovation and Development U20B6005

  • 摘要: 我国南海北陆坡水合物富集区广泛发育古滑坡,若水合物开采不当可能导致古滑坡再次滑动。为了探究水合物开采诱发古滑坡再启滑机制,针对含下卧型水合物藏和伴生型水合物藏的两个典型古滑坡体,在边坡极限平衡分析框架内考虑了水合物开采过程中的瞬态孔压与土体抗剪强度变化,分析了水合物开采过程中不同古滑坡体的稳定性演变与失稳模式。研究表明,水合物分解导致所赋存土体的胶结强度弱化,同时逸出气体可能被阻滞于渗透性较低的古滑坡体下方,从而形成横向扩展的高压区。下卧型储层边坡的潜在滑移面贯穿古滑移面,一般表现为滑动型滑坡;开采初期因孔压积聚而导致边坡稳定性降低,开采中后期因二次水合物生成可能导致边坡稳定性有所回升,在本文计算条件下未触发古滑坡复活。伴生型储层边坡的稳定性受土体强度劣化与孔压积聚的共同影响,水合物开采导致古滑坡重新滑动,表现为滑塌型滑坡。
  • 图  1  下卧型与伴生型水合物储层成藏机理和开采逃逸气体被阻滞于古滑移面的示意图

    Figure  1.  Illustration of the formation mechanism of the under ̄burden- and associated-type hydrate reservoirs and the escaping gas trapped in the ancient slip surface from hydrate production

    图  2  计算边坡模型及不同类型边坡的地层设置

    Figure  2.  The calculation slope model and the stratum settings of different types of slopes

    图  3  水合物分解锋面的扩展:(a~c)下卧型储层;(d~f)伴生型储层

    Figure  3.  The propagation of hydrate dissociation front in: (a~c) underburden-type reservoir; (d~f) associated-type reservoir

    a. 435 d; b. 1200 d; c. 3019 d; d. 155 d; e. 1139 d; f. 3439 d

    图  4  有效黏聚力的演变:(a~c)下卧型储层;(d~f)伴生型储层

    Figure  4.  The evolution of effective cohesion in: (a~c) underburden-type reservoir; (d~f) associated-type reservoir

    a. 435 d; b. 1200 d; c. 3019 d; d. 155 d; e. 1139 d; f. 3439 d

    图  5  超孔压的演变:(a~c)下卧型储层;(d~f)伴生型储层

    Figure  5.  The evolution of excess pore pressure in: (a~c) underburden-type reservoir; (d~f) associated-type reservoir

    a. 435 d; b. 1200 d; c. 3019 d; d. 155 d; e. 1139 d; f. 3439 d

    图  6  初始潜在滑移面:(a)下卧型储层;(b)伴生型储层

    Figure  6.  The initial potential slip surface of: (a) underburden-type reservoir; (b) associated-type reservoir

    图  7  边坡稳定安全系数演变:(a)下卧型储层;(b)伴生型储层

    Figure  7.  The evolution of the slope stability factor of safety of: (a) underburden-type reservoir; (b) associated-type reservoir

    图  8  滑移面有效黏聚力演变:(a)下卧型储层;(b)伴生型储层

    Figure  8.  The evolution of the effective cohesion on the potential slip surface of: (a) underburden-type reservoir; (b) associated-type reservoir

    图  9  滑移面超孔压演变:(a)下卧型储层;(b)伴生型储层

    Figure  9.  The evolution of the excess pore pressure on the potential slip surface of: (a) underburden-type slope; (b) associated-type slope

    表  1  计算模型

    Table  1.   Models used in this study

    参数 计算模型
    热导率(Moridis et al., 2005) $ {\lambda _\mathit{\Theta }}{\rm{ = }}\left({\sqrt {{\mathit{S}_{\rm{H}}}} + \sqrt {{\mathit{S}_{\rm{A}}}} } \right)\left({{\mathit{\lambda }_{{\rm{SW}}}} - {\mathit{\lambda }_{{\rm{sd}}}}} \right) + {\mathit{\lambda }_{{\rm{sd}}}}$
    λsd/W·(mK)-1
    λsw/W(mK)-1
    SH
    SA
    干热导率
    湿热导率
    水合物饱和度
    液相饱和度
    毛细压力(Genuchten,1980) $ {P_{\rm{c}}} = {P_0}{\left[ {{{\left({\frac{{{S_{\rm{A}}} - {S_{{\rm{irA}}}}}}{{1 - {S_{{\rm{irA}}}}}}} \right)}^{ - 1/\xi }} - 1} \right]^\xi }$
    ξ
    SirA
    P0/Pa
    孔隙尺寸分布指标
    残余液相饱和度
    进气压强值
    含水合物沉积物渗透率(Moridis et al., 2014) $ k = {k_0}{\left[ {\frac{{\varphi \left({1 - {S_{\rm{H}}}} \right) - {\varphi _{\rm{c}}}}}{{\varphi - {\varphi _{\rm{c}}}}}} \right]^n}$
    k0/mD
    φ
    φc
    n
    固有渗透率
    实际孔隙率
    临界孔隙率
    衰减指数
    液相(A)与气相(G)相对渗透率(Moridis,2014) $ {k_{{\rm{r}}\alpha }} = {\left[ {\frac{{\left({{S_{\rm{ \mathsf{ α} }}} - {S_{{\rm{ir}}\mathit{\alpha }}}} \right)}}{{1 - {S_{{\rm{ir}}\mathit{\alpha }}}}}} \right]^{{n_\alpha }}}, \mathit{\alpha }{\rm{ \equiv A, G}}$
    nAnG
    SASG
    SirA
    SirG
    经验指数
    液相与气相饱和度
    液相残余饱和度
    气相残余饱和度
    下载: 导出CSV

    表  2  地层的物理力学参数

    Table  2.   Physical and mechanical parameters of the strata

    参数* 泥质粉砂 古滑坡主体 古滑移面 含水合物层
    ρ/kg·m-3 2650 2650 2650 2650
    c′/kPa 20 20 0 1000
    φ′/(°) 25 25 25 25
    λd/W·(mK)-1 1.0 1.0 1.0 1.0
    λw/W·(mK)-1 3.1 3.1 3.1 3.1
    P0/Pa 105 104 104 104
    ξ 0.45 0.15 0.45 0.45
    nA 3.5 5.0 3.5 3.5
    nG 2.5 3.0 2.5 2.5
    SirA 0.25 0.55 0.25 0.25
    SirG 0.01 0.05 0.01 0.01
    φ 0.4 0.1 0.6 0.4
    φc 0.02 0.005 0.05 0.02
    k0/mD 75 10-5 75
    *命名:ρ为土粒密度;c′为有效黏聚力;φ′为有效内摩擦角
    下载: 导出CSV
  • Chen D X, Wang X J, Völker D, et al. 2016. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea[J]. Marine and Petroleum Geology, 77 : 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012
    Dugan B. 2012. Petrophysical and consolidation behavior of mass transport deposits from the northern Gulf of Mexico, IODP Expedition 308[J]. Marine Geology, 315-318 : 98-107. doi: 10.1016/j.margeo.2012.05.001
    Genuchten V A N. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    GEO-SLOPE InternationalLtd., 2017. Stability Modeling With Geostudio[EB/OL]. https://www.geoslope.com/learning/support-Resources#dnn_BooksHeaderPane.
    Guo X S, Zheng D F, Nian T K, et al. 2020. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea[J]. Marine Georesources and Geotechnology, 37 : 804-817. doi: 10.1080/1064119X.2019.1632996
    Hance J J. 2003. Submarine slope stability[D]. Austin: University of Texas at Austin.
    He J, Liang Q Y, Ma Y, et al. 2018. Geohazards types and their distribution characteristics in the natural gas hydrate area on on the northern slope of the South China Sea[J]. Geology in China, 45 (1): 15-28. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201801003.htm
    He Y, Zhong G F, Wang L L, et al. 2014. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea[J]. Marine and Petroleum Geology, 57 : 546-560. doi: 10.1016/j.marpetgeo.2014.07.003
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Lall D, Vishal V, Lall M V, et al. 2022. The role of heterogeneity in gas production and the propagation of the dissociation front using thermal stimulation, and huff and puff in gas hydrate reservoirs[J]. Journal of Petroleum Science and Engineering, 208: 109320. doi: 10.1016/j.petrol.2021.109320
    Lei Y N, Wang G J, Wu S G. 2018. Preliminary research on characteristics, distribution patterns and origins of submarine slides in deepwater oil and gas exploration area of Baiyun Sag[J]. Marine Geology & Quaternary Geology, 38 (2): 106-114. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201802011.htm
    Li G, Moridis G J, Zhang K N, et al. 2011. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J]. Journal of Petroleum Science and Engineering, 77 (1): 49-68. doi: 10.1016/j.petrol.2011.02.009
    Li L, Lei X H, Zhang X, et al. 2013. Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea[J]. Marine and Petroleum Geology, 39 (1): 92-101. doi: 10.1016/j.marpetgeo.2012.09.007
    Li W, Wu S G, Wang X J, et al. 2014. Baiyun Slide and its relation to rluid migration in the northern slope of Southern China Sea[C]//Krastel S, et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Harzards Research, 37: 105-115.
    Li X S, Wang Y, Li G, et al. 2011. Experimental investigation into methane hydrate decomposition during three-dimensional thermal huff and puff[J]. Energy & Fuels, 25 : 1650-1658. http://www.onacademic.com/detail/journal_1000036712656810_591e.html
    Liu F, Tan L, Crosta G, et al. 2020. Spatiotemporal destabilization modes of upper continental slopes undergoing hydrate dissociation[J]. Engineering Geology, 264: 105286. doi: 10.1016/j.enggeo.2019.105286
    Ma Y, Li S Z, Liang J Q, et al. 2012. Characteristics and mechanism of submarine landslides in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Jinlin University(Earth Science Edition), 42 (S3): 196-205. http://www.researchgate.net/publication/287910409_Characteristics_and_mechanism_of_submarine_landslides_in_the_Qiongdongnan_Basin_Northern_South_China_Sea
    Moridis G J, Pruess K. 2014. User's manual of the TOUGH+CORE code v1.5: A general-purpose simulator of non-isothermal flow and transport through porous and fractured media[R]. Berkeley, America: Lawrence Berkeley National Laboratory.
    Moridis G J, Queiruga A F, Reagan M T. 2018. Geomechanical stability and overall system behavior of sloping oceanic accumulations of hydrates responding to dissociation stimuli[C]//Kuala Lumpur, Malaysia: Offshore Technology Conference Asia.
    Moridis G J, Seol Y, Kneafsey T J. 2005. Studies of reaction kinetics of methane hydrate dissocation in porous media[R]. Berkeley, America: Lawrence Berkeley National Laboratory.
    Moridis G J. 2014. User's manual for the HYDRATE v1.5 option of TOUGH+v1.5: A code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley, America: Lawrence Berkeley National Laboratory.
    Moscardelli L, Wood L. 2008. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research, 20 (1): 73-98. doi: 10.1111/j.1365-2117.2007.00340.x
    Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964
    Nian T K, Song X L, Zhao W, et al. 2020. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation[J/OL]. Environmental Geotechnics, https://doi.org/10.1680/jenge.19.00070
    Song B J, Cheng Y F, Yan C L, et al. 2019. Seafloor subsidence response and submarine slope stability evaluation in response to hydrate dissociation[J]. Journal of Natural Gas Science and Engineering, 65 : 197-211. doi: 10.1016/j.jngse.2019.02.009
    Su P B, Liang J Q, Zhang W, et al. 2020. Natureal gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 40 (8): 77-89.
    Sun Q L, Alves T, Xie X N, et al. 2017. Free gas accumulations in basal shear zones of mass-transport deposits(Pearl River Mouth Basin, South China Sea): An important geohazard on continental slope basins[J]. Marine and Petroleum Geology, 81 : 17-32. doi: 10.1016/j.marpetgeo.2016.12.029
    Sun Q L, Leslie S. 2020. Tsunamigenic potential of an incipient submarine slope failure in the northern South China Sea[J]. Marine and Petroleum Geology, 112: 104111. doi: 10.1016/j.marpetgeo.2019.104111
    Sun Y B, Wu S G, Wang Z J, et al. 2008. The geometry and deformation characteristics of Baiyun submarine landslide[J]. Marine Geology & Quaternary Geology, 28 (6): 69-77. http://www.researchgate.net/publication/281468040_The_geometry_and_deformation_characteristics_of_Baiyun_Submarine_Landslide
    Tan L, Liu F, Huang Y, et al. 2021. Production-induced instability of a gentle submarine slope: Potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 289: 106174. doi: 10.1016/j.enggeo.2021.106174
    Tan L, Liu F. 2020. Submarine slope stability during depressurization and thermal stimulation hydrate production with horizontal wells[J]. Chinese Journal of Theoretical and Applied Mechanics, 52 (2): 567-577.
    Wan L, Yu X H, Steve T, et al. 2016. Submarine landslides, relationship with BSRs in the Dongsha area of South China Sea[J]. Petroleum Research, 1 : 59-69. doi: 10.1016/S2096-2495(17)30031-5
    Wang W W, Wang D W, Wu S G, et al. 2018. Submarine landslides on the north continental slope of the South China Sea[J]. Journal of Ocean University of China, 17 : 83-100. doi: 10.1007/s11802-018-3491-0
    Wu X M, Liang Q Y, Ma Y, et al. 2018. Submarine landslides and their distribution in the gas hydrate area on the North slope of the South China Sea[J]. Energies, 11: 3481. doi: 10.3390/en11123481
    Yang S X, Lei Y, Liang J Q, et al. 2017. Concentrated gas hydrate in the Shenhu Area, South China Sea: Results from drilling expeditions GMGS3 & GMGS4[C]//Proceedings of 9th International Conference on Gas Hydrates.
    Yin S R, Wang L L, Guo Y Q, et al. 2015. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea[J]. Science China Earth Sciences, 58 : 971-985. doi: 10.1007/s11430-014-5044-8
    Yoneda J, Oshima M, Kida M, et al. 2019. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India[J]. Marine and Petroleum Geology, 108 : 524-536. doi: 10.1016/j.marpetgeo.2018.07.006
    Zhang X H, Lu X B, Chen X D, et al. 2016. Mechanism of soil stratum instability induced by hydrate dissociation[J]. Ocean Engineering, 122 : 74-83. doi: 10.1016/j.oceaneng.2016.06.015
    Zhou Q J. 2015. Identification of submarine landslides and characteristics analysis in the Baiyun sag of the South China Sea northern slope[D]. Shandong: The First Institute of Oceanography.
    Zhu C Q, Jia Y G, Liu X L, et al. 2015. Classification and genetic machanism of submarine landslide: A review[J]. Marine Geology & Quaternary Geology, 35 (6): 153-163. http://www.researchgate.net/publication/287948956_Classification_and_Genetic_Mechanism_of_Submarine_Landslide_A_Review
    何健, 梁前勇, 马云, 等. 2018. 南海北部陆坡天然气水合物区地质灾害类型及其分布特征[J]. 中国地质, 45 (1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801003.htm
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    雷亚妮, 王广建, 吴时国. 2018. 白云凹陷深水油气开发区海底滑坡的特征、分布以及成因初探[J]. 海洋地质与第四纪地质, 38 (2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201802011.htm
    马云, 李三忠, 梁金强, 等. 2012. 南海北部琼东南盆地海底滑坡特征及其成因机制[J]. 吉林大学学报(地球科学版), 42 (S3): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3021.htm
    苏丕波, 梁金强, 张伟, 等. 2020. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 40 : 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803022.htm
    孙运宝, 吴时国, 王志君, 等. 2008. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 28 : 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200806012.htm
    谭琳, 刘芳. 2020. 水平井降压法和热激法水合物开采对海底边坡稳定性的影响[J]. 力学学报, 52 (2): 567-577. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202002025.htm
    周庆杰. 2015. 南海北部陆坡白云凹陷区海底滑坡的识别与特征分析[D]. 山东: 国家海洋局第一海洋研究所.
    朱超祁, 贾永刚, 刘晓磊, 等. 2015. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 35 (6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  23
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 修回日期:  2021-12-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回