考虑波浪与地震动力效应的曹妃甸海底斜坡稳定性探讨

张浩 荣泽 年廷凯 付崔伟 张建锁 廖鑫昌

张浩, 荣泽, 年廷凯, 等.2021.考虑波浪与地震动力效应的曹妃甸海底斜坡稳定性探讨[J].工程地质学报, 29(6): 1796-1804.doi: 10.13544/j.cnki.jeg.2021-0717
引用本文: 张浩, 荣泽, 年廷凯, 等.2021.考虑波浪与地震动力效应的曹妃甸海底斜坡稳定性探讨[J].工程地质学报, 29(6): 1796-1804.doi: 10.13544/j.cnki.jeg.2021-0717
Zhang Hao, Rong Ze, Nian Tingkai, et al. 2021. Study on submarine slope stability of Caofeidian Port considering wave and seismic dynamic effects [J].Journal of Engineering Geology, 29(6): 1796-1804. doi: 10.13544/j.cnki.jeg.2021-0717
Citation: Zhang Hao, Rong Ze, Nian Tingkai, et al. 2021. Study on submarine slope stability of Caofeidian Port considering wave and seismic dynamic effects [J].Journal of Engineering Geology, 29(6): 1796-1804. doi: 10.13544/j.cnki.jeg.2021-0717

考虑波浪与地震动力效应的曹妃甸海底斜坡稳定性探讨

doi: 10.13544/j.cnki.jeg.2021-0717
基金项目: 

国家自然科学基金 51879036

国家自然科学基金 52079020

辽宁省兴辽英才计划项目 XLYC2002036

详细信息
    作者简介:

    张浩(1998-),男,硕博连读生,主要从事海底斜坡稳定性分析方面的研究. E-mail: HaoZ@mail.dlut.edu.cn

    通讯作者:

    年廷凯(1971-),男,博士,教授,博士生导师,主要从事海洋岩土力学与能源岩土工程、工程地质环境与地质灾害领域的教学和科研工作. E-mail: tknian@dlut.edu.cn

  • 中图分类号: P67

STUDY ON SUBMARINE SLOPE STABILITY OF CAOFEIDIAN PORT CONSIDERING WAVE AND SEISMIC DYNAMIC EFFECTS

Funds: 

the National Natural Science Foundation of China 51879036

the National Natural Science Foundation of China 52079020

Liaoning Revitalization Talents Program XLYC2002036

  • 摘要: 波浪和地震等动力荷载容易引起斜坡海床失稳,进而引发海底滑坡,危及港口码头安全和海洋工程建设。本文以曹妃甸港南部深槽处海底斜坡为研究对象,考虑真实波浪荷载和地震荷载,采用有限元法和极限平衡法相结合的研究手段对海底斜坡的动态稳定性进行了定量化计算,探讨了动力效应对特殊环境下海底斜坡稳定性的影响机制。结果表明: (1)极端波浪荷载和地震动力荷载对海底斜坡稳定性影响很大,重现期为50a的波浪荷载和峰值加速度为0.15 g的地震动力荷载将引发海底斜坡失稳,且地震荷载将诱发海底斜坡产生较大位移; (2)动力效应会引发海床侵蚀和岩土体强度弱化,进而降低斜坡安全系数,这是稳定性分析中不可忽略的重要因素。
  • 图  1  曹妃甸港位置图

    Figure  1.  Location of Caofeidian Port

    图  2  典型海底斜坡剖面图

    Figure  2.  Cross-section of typical submarine slope

    图  3  网格剖分图

    Figure  3.  Mesh grid

    图  4  不同时刻波浪荷载简化示意图

    Figure  4.  Simplified diagram of wave load at different time

    a. t=0; b. t=T/2

    图  5  地震动力效应图

    a. 地震时程曲线; b. 相对位移曲线

    Figure  5.  Seismic dynamic effect diagram

    图  6  考虑侵蚀海底斜坡截面图

    Figure  6.  Cross-section of the eroded submarine slope

    图  7  不同重现期波浪荷载作用下侵蚀弱化斜坡安全系数

    Figure  7.  Safety factor diagram of eroded and weakened slope under wave loads with different recurrence intervals

    图  8  不同地震烈度荷载作用下侵蚀弱化斜坡安全系数

    Figure  8.  Safety factor of eroded and weakened slope under different seismic intensity loads

    图  9  最危险工况临界滑动面(Fs=0.141)

    Figure  9.  Critical sliding surface under the most unfavorable condition(Fs=0.141)

    表  1  曹妃甸海底斜坡物理力学性质指标(褚宏宪等,2016)

    Table  1.   Physical and mechanical properties of Caofeidian submarine slope

    土层 饱和重度/kN·m-1 有效应力
    黏聚力/kPa 内摩擦角/(°)
    18.4 6.0 28.0
    ②-1 17.2 8.0 10.8
    ②-2 19.1 9.0 33.4
    19.5 23.1 27.2
    ④-1 20.1 17.8 28.6
    ④-2 19.4 11.0 35.0
    19.6 12.0 36.0
    21.3 24.2 27.2
    下载: 导出CSV

    表  2  不同重现期波浪荷载作用下安全系数

    Table  2.   Safety factors of submarine slopes under wave loads with different recurrence intervals

    重现期时刻 5a 50a
    0 T/2 0 T/2
    安全系数 2.753 2.826 1.020 1.083
    下载: 导出CSV

    表  3  曹妃甸海底斜坡地震设防烈度与计算安全系数关系表

    Table  3.   Relationship between the seismic fortification intensity of the Caofeidian submarine slope and the calculated safety factor

    抗震设防烈度 6 7 8 9
    近震设计 远震设计 近震设计 远震设计
    设计加速度值/g 0.05 0.10 0.15 0.20 0.30 0.40
    安全系数 2.540 1.600 1.161 0.909 / /
    下载: 导出CSV

    表  4  考虑坡面侵蚀与土体强度弱化后的海底斜坡稳定性

    Table  4.   Stability evaluation of submarine slope after erosion and weakening

    工况 侵蚀后斜坡 土体强度弱化按10%考虑 土体强度弱化按20%考虑
    常规荷载 天然工况 5.663 5.046 4.446
    大落潮工况 5.269 4.707 4.157
    波浪重现期及作用时刻 5a 0 2.582 2.305 2.034
    T/2 2.601 2.319 2.045
    50a 0 0.997 0.918 0.823
    T/2 1.033 0.454 0.271
    拟静力地震荷载水平加速度 0.05g 2.419 2.156 1.900
    0.10g 1.526 1.360 1.198
    0.15g 1.108 0.988 0.871
    0.20g 0.868 0.773 0.681
    动力地震波荷载 0.507 0.417 0.141
    下载: 导出CSV
  • Cao J F,Jin X J,Li J G,et al. 2013. Submarine slope stability evaluation based on strength reduction finite element method[J]. Applied Mechanics and Materials, 1325-1329. http://www.onacademic.com/detail/journal_1000037604882410_c820.html
    Chu H X, Fang Z H, Shi H J, et al. 2016. Analysis and evaluation on the slope stability of Caofeidian deep trough[J]. The Ocean Engineering, 34 (3): 114-122. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201603013.htm
    Chu H X, Fang Z H, Shi H J, et al. 2017. Application of Newmark displacement analysis to seismic stability evaluation of submarine slope[J]. Marine Geological Frontiers, 33 (6): 53-58. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201706008.htm
    Fang Z H, Chu H X. 2015. Analysis of slope stability under wave action in Caofeidian deep groove[J]. Marine Geological Frontiers, 31 (11): 29-35. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201511006.htm
    Fang Z H. 2014. Study on geological disaster research and stability analysis of Caofeidian deep groove[D]. Qingdao: Ocean University of China.
    Jin X J. 2013. The stability evaluation of the typical Canyon area in South China Sea based on the strength reduction finite element method[D]. Qingdao: Qingdao University of Technology.
    Kramer S L. 1996. Geotechnical earthquake engineering[M]. Upper Saddle River, New Jersey: Prentice Hall.
    Lacasse S, Nadim F, Vanneste M, et al. 2013. Case studies of offshore slope stability[C]//Geo-Congress. San Diego, CA (US): ASCE: 2379-2418.
    Lee H, Locat J, Dartnell P, et al. 1999. Regional variability of slope stability: application to the Eel margin, California[J]. Marine Geology, 154(1-4): 305-321. doi: 10.1016/S0025-3227(98)00120-0
    Li L L, Wang D W, Zhang C, et al. 2020. Comparative study on potential landslide and tsunami disasters in several typical landslide areas in the South China Sea[R]. Chongqing: Annual Meeting of Chinese Geoscience Union.
    Liu B, Nian T K, Liu M, et al. 2016. Stability of seafloor slopes based on upper bound approach of limit analysis[J]. Haiyang Xuebao, 38 (7): 135-143. http://d.wanfangdata.com.cn/periodical/hyxb201607013
    Liu M, Liu B, Nian T K, et al. 2015. Numerical analysis of the failure mechanism of submarine slope under linear wave loading[J]. China Earthquake Engineering Journal, 37 (2): 415-421. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201502022.htm
    Nian T K, Liu M, Liu B, et al. 2016. Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 34 (4): 9-15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201604002.htm
    Rodriguez-Ochoa R, Nadim F, Hicks M A. 2015. Influence of weak layers on seismic stability of submarine slopes[J]. Marine and Petroleum Geology, 65: 247-268. doi: 10.1016/j.marpetgeo.2015.04.007
    Si S W, Wang D W, He H Z, et al. 2021. Seabed instability investigation and assessment procedures[J]. Marine Geology Frontiers, 37 (2): 21-30.
    Sun Y F, Dong L F, Pu G J, et al. 2006. Stability analysis of slopes in the subaqueous delta of the Yellow River under storm wave loading[J]. Journal of Engineering Geology, 14 (5): 582-587. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200605001.htm
    Urgeles R, Locat J, Lee H J, et al. 2002. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment[J]. Marine Geology, 185 (3): 319-340.
    Wang Y, Ke X K, Jia Y L, et al. 1999. Study on the coastal profile changes of the Caofeidian area in the Bohai Sea since 1980s[J]. Marine Science Bulletin, 18 (1): 43-51. http://d.wanfangdata.com.cn/Periodical/hytb199901006
    Xiu Z X, Liu L J, Li X S, et al. 2016. Slope stability analysis of submarine canyon area along pipeline route of Liwan3-1 gasfield[J]. Journal of Engineering Geology, 24 (4): 535-541. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201604008.htm
    Zhang L, Luan X W. 2012. Quantitative analysis of submarine slopes stability on the northern slope of the South China Sea[J]. Progress in Geophysics, 27 (4): 1443-1453. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201204020.htm
    Zhang N, Zhao X F, Han Z Y, et al. 2020. Research on the change of flow field before and after the opening of the Nachao River in Caofeidian port area of Tangshan[J]. Journal of Waterway and Harbor, 41 (1): 29-36.
    Zhang W, Chen Z H, Huang J N, et al. 2005. Stability analysis of seabed by shore in Xiamen[J]. Journal of Water Resources and Architectural Engineering, 3 (1): 45-48. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FSJS200501012.htm
    Zheng D, Nian T, Liu B, et al. 2019. Investigation of the stability of submarine sensitive clay slopes underwave-induced pressure[J]. Marine Georesources & Geotechnology, 37 (1): 116-127. http://www.onacademic.com/detail/journal_1000040884051410_9bfc.html
    褚宏宪, 方中华, 史慧杰, 等. 2016. 曹妃甸海底深槽斜坡稳定性分析与评价[J]. 海洋工程, 34 (3): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201603013.htm
    褚宏宪, 方中华, 史慧杰, 等. 2017. Newmark位移分析方法在海底斜坡地震稳定性评价中的应用[J]. 海洋地质前沿, 33 (6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201706008.htm
    方中华, 褚宏宪. 2015. 波浪作用下曹妃甸深槽斜坡的稳定性[J]. 海洋地质前沿, 31 (11): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201511006.htm
    方中华. 2014. 曹妃甸甸头深槽灾害地质因素研究及稳定性分析[D]. 青岛: 中国海洋大学.
    金晓杰. 2013. 基于有限元强度折减法的南海某典型峡谷区斜坡稳定性评价[D]. 青岛: 青岛理工大学.
    李琳琳, 王大伟, 章程, 等. 2020. 南海域内几个典型滑坡区的潜在滑坡海啸灾害对比研究[R]. 重庆: 2020年中国地球科学联合学术年会.
    刘博, 年廷凯, 刘敏, 等. 2016. 基于极限分析上限方法的海底斜坡稳定性评价[J]. 海洋学报, 38 (7): 135-143. doi: 10.3969/j.issn.0253-4193.2016.07.013
    刘敏, 刘博, 年廷凯, 等. 2015. 线性波浪加载下海底斜坡失稳机制的数值分析[J]. 地震工程学报, 37 (2): 415-421. doi: 10.3969/j.issn.1000-0844.2015.02.0415
    年廷凯, 刘敏, 刘博, 等. 2016. 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 34 (4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201604002.htm
    司少文, 王大伟, 贺惠忠, 等. 2021. 海底失稳调查与评价流程[J]. 海洋地质前沿, 37 (2): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202102003.htm
    孙永福, 董立峰, 蒲高军, 等. 2006. 风暴潮作用下黄河水下三角洲斜坡稳定性研究[J]. 工程地质学报, 14 (5): 582-587. doi: 10.3969/j.issn.1004-9665.2006.05.002
    王艳, 柯贤坤, 贾玉连, 等. 1999. 渤海湾曹妃甸80年代以来海岸剖面变化研究[J]. 海洋通报, 18 (1): 43-51. doi: 10.3969/j.issn.1001-6392.1999.01.006
    修宗祥, 刘乐军, 李西双, 等. 2016. 荔湾3-1气田管线路由海底峡谷段斜坡稳定性分析[J]. 工程地质学报, 24 (4): 535-541. doi: 10.13544/j.cnki.jeg.2016.04.007
    张亮, 栾锡武. 2012. 南海北部陆坡稳定性定量分析[J]. 地球物理学进展, 27 (4): 1443-1453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201204020.htm
    张娜, 赵雪夫, 韩志远, 等. 2020. 唐山港曹妃甸港区纳潮河开通对流场影响研究[J]. 水道港口, 41 (1): 29-36. doi: 10.3969/j.issn.1005-8443.2020.01.005
    张伟, 陈正汉, 黄建南, 等. 2005. 厦门近岸海床稳定分析[J]. 水利与建筑工程学报, 3 (1): 45-48. doi: 10.3969/j.issn.1672-1144.2005.01.012
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  21
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 修回日期:  2021-11-20
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回