SHAKING TABLE TESTS TO INVESTIGATE THE DEFORMATION CHARAC-TERISTICS OF WATER PIPELINES IN MARINE LIQUEFIED FOUNDATIONS
-
摘要: 埋地管道应用广泛,而在管道铺设过程中穿越的大范围可液化土层,面临着地震作用下管道液化上浮和变形破坏等风险。依托某临海火电站直埋管道工程,采用室内振动台模型试验方法,分析了海洋液化地基中输水管道的变形特性和动力响应,探究了砾石压重法和排水板加固法的抗液化效果。结果表明:海洋饱和砂土地基在动力荷载作用下发生液化,不同深度土层加速度出现不同程度的衰减,上部土层加速度衰减幅度最大且沿深度减小;不同土层中土体超孔压先快速上升达到峰值并维持稳定直至振动停止;在振动过程中,管道发生了明显上浮,且上浮速率逐渐降低,当振动停止时达到最大上浮位移;砾石压重法对于管道抗液化效果不佳,加速度和超孔压时程曲线与标准工况基本一致,中上层砂土出现明显液化现象,但超孔压峰值存在一定下降,且管道上浮与标准工况相比下降65.4%;而宽、窄排水板加固法效果更加显著,整体土层液化现象得到抑制,超孔压峰值与标准工况相比较小,且在振动期间持续降低,平均峰值与标准工况相比分别下降48.30%和38.91%,同时管道竖向位移与标准工况相比降幅均超过100%。在实际工程应用中,推荐使用排水板加固方案,同时需要选择适当的排水通道宽度。Abstract: Buried pipelines are widely used, and the extensive liquefiable soil layers will lead to the problem of pipeline uplift and deformation damage during earthquakes. Based on the buried pipeline project, we analyzed the deformation characteristics and dynamic response of pipes in marine liquefied foundations, and investigated the anti-liquefaction effect of gravel layers and drainage panels. The main conclusions are as follows: the marine saturated sand foundation liquefies under the dynamic load, and the acceleration decay decreases with increasing depth. The excess pore pressure in different depth rises rapidly to the peak and remains stable until the vibration stops. During the vibration, the pipe floats significantly and the floating rate decreases gradually. The gravel layer method is not effective in anti-liquefaction of the pipe, and the acceleration and excess pore pressure are basically consistent with the standard working condition. The effect of wide or narrow drainage panels method are more significant, and the liquefaction phenomenon of the overall soil layer is suppressed. The peak excess pore pressure is smaller compared with the standard working condition, and the average peak value is reduced by 48.30% and 38.91%, respectively, while the vertical displacement of the pipe decreases by more than 100% compared with the standard working condition. In practical engineering applications, it is recommended to use the drainage panels to reduce the risk of foundation liquefaction, while the appropriate drainage panels width needs to be selected.
-
表 1 模型试验工况
Table 1. Model test conditions
工况 试验加固措施 标准工况 无 工况1 管道上部覆盖6cm厚的矩形砾石 工况2 管道两侧等间距布置4个1cm宽的排水板 工况3 管道两侧等间距布置4个0.5cm宽的排水板 表 2 各工况不同测点的超静孔压均值表
Table 2. The average value of excess static pore pressure at different measurement points for each working condition
孔压计编号 P1 P2 P3 P4 超静孔压均值/kPa 标准工况 2.151 1.578 1.292 0.560 工况1 1.898 1.190 0.867 0.486 工况2 1.032 0.874 0.668 0.413 工况3 1.431 0.964 0.893 0.447 变化率
(对比标准工况)
/%工况1 ↓11.76 ↓24.59 ↓32.89 ↓13.21 工况2 ↓52.02 ↓44.61 ↓48.30 ↓26.25 工况3 ↓33.47 ↓38.91 ↓30.88 ↓20.18 表 3 各工况不同测点的超静孔压下降速率表
Table 3. The drop rate of excess static pore pressure at different measurement points for each working condition
孔压计编号 P1 P2 P3 P4 超静孔压下降速率
/Pa·s-1标准工况 / 9.97 4.01 -1.77 工况1 / -4.73 -7.64 0.95 工况2 / 52.96 23.55 7.59 工况3 / 37.53 30.01 3.65 -
Bai X, Tang X W, Hu J L. 2019. Numerical analysis of anti-liqefaction uplift of a shallow buried subway station in improved counter-measures[J]. Journal of Disaster Prevention and Mitigation Engineering, 39 (5): 778-786, 878. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201905012.htm Chen Y M, Liu H L, Zhao N. 2010. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 43 (12): 114-119. http://www.cnki.com.cn/Article/CJFDTotal-TMGC201012016.htm Hu J L, Liu H B. 2017. Numerical experiment of liquefaction-induced uplift response of metro station by improved gravelly soil method[J]. Tunnel Construction, 37 (S2): 82-86. http://en.cnki.com.cn/Article_en/CJFDTotal-JSSD2017S2012.htm Huang Y, Yu M, Bhattacharya S. 2013. Review on liquefaction-induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake(Japan)[J]. Chinese Journal of Geotechnical Engineering, 35 (5): 834-840. http://d.wanfangdata.com.cn/periodical/ytgcxb201305005 Kong X J, Zhou D G. 2007. Study on the uplift behavior of pipelines based on post-liquefaction deformation method[J]. Chinese Journal of Geotechnical Engineering, 29 (8): 1199-1204. http://www.researchgate.net/publication/288657376_Study_on_uplift_behavior_of_pipelines_based_on_post-liquefaction_deformation_method Koseki J, Matsuo O, Koga Y. 1997. Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake[J]. Soils & Foundations, 37 (1): 97-108. http://www.sciencedirect.com/science/article/pii/S0038080620312245 Krishnaswamy N R, Isaac N T. 1994. Liquefaction potential of reinforced sand[J]. Geotextiles and Geomembranes, 13 (1): 23-41. doi: 10.1016/0266-1144(94)90055-8 Krishnaswamy N R, Thomas Isaac N. 1995. Liquefaction analysis of saturated reinforced granular soils[J]. Journal of Geotechnical Engineering, 121 (9): 645-651. doi: 10.1061/(ASCE)0733-9410(1995)121:9(645) Li C S, Song J, Shi J S. 2003. Model test of underground pipeline anti-liquefaction measures in 2003[J]. Oil and Gas Storage and Transportation, 22 (7): 23-26. Maheshwari B K, Singh H P, Saran S. 2012. Effects of reinforcement on liquefaction resistance of Solani sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 138 (7): 831-840. doi: 10.1061/(ASCE)GT.1943-5606.0000645 Shuai J, Wang X L, Ye Y X, et al. 2009. Stress analysis of pipeline subject to surface load[J]. Journal of China University of Petroleum(Natural Science Edition), 33 (2): 99-103. http://www.researchgate.net/publication/290297169_Stress_analysis_of_pipeline_subject_to_surface_load Sun S P, Han Y. 2003. State-of-the-art of the research on lifeline earthquake engineering[J]. China Civil Engineering Journal, 36 (5): 97-98. http://www.cnki.com.cn/Article/CJFDTotal-TMGC200305016.htm Towhata I, Vargas-Monge W, Orense R P, et al. 1999. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied sub-soil[J]. Soil Dynamics and Earthquake Engineering, 18 (5): 347-361. doi: 10.1016/S0267-7261(99)00008-1 Wu J, Zhou Z F, Li M W, et al. 2019. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology, 27 (4): 890-902. http://www.researchgate.net/publication/340778795_Advance_on_the_methods_for_predicting_water_inflow_into_tunnels/download Yang D, Guo E D, Wang X J. 2010. Functional failure mode of the Wenchuan earthquake water supply system[J]. Journal of Catastro-phology, 25(1): 350. Zhan Z F, Qi S W, He N W, et al. 2019. Shaking table test study of homogeneous rock slope model under strong earthquake[J]. Journal of Engineering Geology, 27 (5): 946-954. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905002.htm Zhang X L. 2009. Numerical analysis of dynamic response of submarine pipeline and seabed under seismic loading[D]. Dalian: Dalian University of Technology. Zhang X W, Zhu W D, Li H, et al. 2020. Study on uplift behavior and anti-liquefaction measures for subway station during seismic loadings[J]. World Earthquake Engineering, 36 (1): 205-211. Zheng G, Gong X N, Xie Y L, et al. 2012. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 45 (2): 127-146. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TMGC201202020.htm Zhou J, Li X, Ma H C, et al. 2003. Experimental study on dynamic characteristics of free spanning submarine pipelines due to earthquake[J]. Journal of Hydraulic Engineering, 34 (1): 12-16. http://en.cnki.com.cn/Article_en/CJFDTotal-SLXB200301002.htm Zhu D M, Foong S Y, Li Y A. 2020. Experimental study and numerical simulation of a horizontal ground heat exchanger under pavement[J]. Journal of Engineering Geology, 28 (5): 1084-1090. Zhu H H, Wang D Y, Wang B J, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28 (2): 317-326. Zou D G, Kong X J, Ling H L, et al. 2002. Experimental study on the uplift behavior of pipeline in saturated sand foundation and earthquake resistant measures during an earthquake[J]. Chinese Journal of Geotechnical Engineering, 24 (3): 323-326. http://d.wanfangdata.com.cn/Periodical/ytgcxb200206030 Zou D G, Kong X J. 2010. Numerical analysis of mitigation methods against pipeline up-lifting in liquefiable soil[J]. Journal of Dalian University of Technology, 50 (3): 379-385. http://www.cqvip.com/QK/90724X/20103/33938189.html Zou D G. 2008. Study on uplifting mechanism and mitigation measure-ment of the pipelines buried at shallow depth during the earth-quake[D]. Dalian: Dalian University of Technology. 白旭, 唐小微, 胡记磊. 2019. 浅埋地铁车站的抗液化上浮改进措施数值分析[J]. 防灾减灾工程学报, 39 (5): 778-786, 878. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905012.htm 陈育民, 刘汉龙, 赵楠. 2010. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 43 (12): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201012016.htm 胡记磊, 刘华北. 2017. 改进碎石排水措施的地铁结构液化上浮响应数值试验[J]. 隧道建设(中英文), 37 (S2): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2017S2012.htm 黄雨, 于淼, Bhattacharya Subhamoy. 2013.2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 35 (5): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305005.htm 孔宪京, 邹德高. 2007. 基于液化后变形分析方法的地下管线上浮反应研究[J]. 岩土工程学报, 29 (8): 1199-1204. doi: 10.3321/j.issn:1000-4548.2007.08.012 李长升, 宋杰, 石江水. 2003. 地下管道抗液化措施模型试验[J]. 油气储运, 22 (7): 23-26. doi: 10.3969/j.issn.1000-8241-D.2003.07.007 帅健, 王晓霖, 叶远锡, 等. 2009. 地面占压荷载作用下的管道应力分析[J]. 中国石油大学学报(自然科学版), 33 (2): 99-103. doi: 10.3321/j.issn:1673-5005.2009.02.019 孙绍平, 韩阳. 2003. 生命线地震工程研究述评[J]. 土木工程学报, 36 (5): 97-98. doi: 10.3321/j.issn:1000-131X.2003.05.017 吴建, 周志芳, 李鸣威, 等. 2019. 隧洞涌水量预测计算方法研究进展[J]. 工程地质学报, 27 (4): 890-902. doi: 10.13544/j.cnki.jeg.2018-245 杨丹, 郭恩栋, 王祥建, 等. 2010. 汶川地震供水系统功能失效模式[J]. 灾害学, 25(1): 350. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2010S1081.htm 詹志发, 祁生文, 何乃武, 等. 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究[J]. 工程地质学报, 27 (5): 946-954. doi: 10.13544/j.cnki.jeg.2019168 张西文, 朱伟东, 李虎, 等. 2020. 地铁车站液化上浮响应及抗浮措施研究[J]. 世界地震工程, 36 (1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001026.htm 张小玲. 2009. 地震作用下海底管线及周围海床动力响应分析[D]. 大连: 大连理工大学. 郑刚, 龚晓南, 谢永利, 等. 2012. 地基处理技术发展综述[J]. 土木工程学报, 45 (2): 127-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201202020.htm 周晶, 李昕, 马恒春, 等. 2003. 地震时海底悬跨管道动力特性试验研究[J]. 水利学报, 34 (1): 12-16. doi: 10.3321/j.issn:0559-9350.2003.01.003 朱敦铭, Foong Shen Yang, 李云安. 2020. 路面下水平地埋管热响应试验与数值模拟研究[J]. 工程地质学报, 28 (5): 1084-1090. doi: 10.13544/j.cnki.jeg.2020-310 朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28 (2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081 邹德高, 孔宪京, Ling H I, 等. 2002. 地震时饱和砂土地基中管线上浮机理及抗震措施试验研究[J]. 岩土工程学报, 24 (3): 323-326. doi: 10.3321/j.issn:1000-4548.2002.03.012 邹德高, 孙宪京. 2010. 液化土中管线抗上浮排水措施数值分析[J]. 大连理工大学学报, 50 (3): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003014.htm 邹德高. 2008. 地震时浅埋地下管线上浮机理及减灾对策研究[D]. 大连: 大连理工大学. -