海洋液化地基中输水管道变形特性的振动台试验研究

陈育民 陈润泽 张坤贤 张喆

陈育民, 陈润泽, 张坤贤, 等. 2021. 海洋液化地基中输水管道变形特性的振动台试验研究[J].工程地质学报, 29(6): 1869-1877. doi: 10.13544/j.cnki.jeg.2021-0721
引用本文: 陈育民, 陈润泽, 张坤贤, 等. 2021. 海洋液化地基中输水管道变形特性的振动台试验研究[J].工程地质学报, 29(6): 1869-1877. doi: 10.13544/j.cnki.jeg.2021-0721
Chen Yumin, Chen Runze, Zhang Kunxian, et al. 2021. Shaking table tests to investigate the deformation characteristics of water pipelines in marine liquefied foundations[J].Journal of Engineering Geology, 29(6): 1869-1877. doi: 10.13544/j.cnki.jeg.2021-0721
Citation: Chen Yumin, Chen Runze, Zhang Kunxian, et al. 2021. Shaking table tests to investigate the deformation characteristics of water pipelines in marine liquefied foundations[J].Journal of Engineering Geology, 29(6): 1869-1877. doi: 10.13544/j.cnki.jeg.2021-0721

海洋液化地基中输水管道变形特性的振动台试验研究

doi: 10.13544/j.cnki.jeg.2021-0721
基金项目: 

国家自然科学基金面上项目 51679072

国家自然科学基金面上项目 51879090

国家自然科学基金面上项目 52179101

详细信息
    通讯作者:

    陈育民(1981-),男,博士,教授,博士生导师,主要从事岩土体动力灾变机理与减灾技术方面的科研与教学工作. E-mail:ymch@hhu.edu.cn

  • 中图分类号: P751

SHAKING TABLE TESTS TO INVESTIGATE THE DEFORMATION CHARAC-TERISTICS OF WATER PIPELINES IN MARINE LIQUEFIED FOUNDATIONS

  • 摘要: 埋地管道应用广泛,而在管道铺设过程中穿越的大范围可液化土层,面临着地震作用下管道液化上浮和变形破坏等风险。依托某临海火电站直埋管道工程,采用室内振动台模型试验方法,分析了海洋液化地基中输水管道的变形特性和动力响应,探究了砾石压重法和排水板加固法的抗液化效果。结果表明:海洋饱和砂土地基在动力荷载作用下发生液化,不同深度土层加速度出现不同程度的衰减,上部土层加速度衰减幅度最大且沿深度减小;不同土层中土体超孔压先快速上升达到峰值并维持稳定直至振动停止;在振动过程中,管道发生了明显上浮,且上浮速率逐渐降低,当振动停止时达到最大上浮位移;砾石压重法对于管道抗液化效果不佳,加速度和超孔压时程曲线与标准工况基本一致,中上层砂土出现明显液化现象,但超孔压峰值存在一定下降,且管道上浮与标准工况相比下降65.4%;而宽、窄排水板加固法效果更加显著,整体土层液化现象得到抑制,超孔压峰值与标准工况相比较小,且在振动期间持续降低,平均峰值与标准工况相比分别下降48.30%和38.91%,同时管道竖向位移与标准工况相比降幅均超过100%。在实际工程应用中,推荐使用排水板加固方案,同时需要选择适当的排水通道宽度。
  • 图  1  某临海火电站工程布置示意图

    Figure  1.  Engineering layout of a waterfront thermal power station

    图  2  管道工程地质断面图

    Figure  2.  Geological cross section of pipeline project

    图  3  7#硅砂和BH240砂样的级配曲线

    Figure  3.  Grading curves of 7# silica sand and BH240 sand samples

    图  4  模型管道截面图及设计图(单位:mm)

    a. 截面图;b. 设计图

    Figure  4.  Model pipeline cross-sectional drawing and design drawing(unit: mm)

    图  5  配重后的模型管道

    Figure  5.  Counterweighted model pipes

    图  6  振动台及层状柔性剪切箱

    a. 振动台;b. 层状柔性剪切箱

    Figure  6.  Shaking table and laminar flexible shear box

    图  7  振动台试验模型平面布置图(单位:cm)

    Figure  7.  Shaking table test model plan layout(unit: cm)

    图  8  振动台模型试验布置正视图、左视图(单位:cm)

    Figure  8.  Front view and left view of shaking table test model arrangement(unit: cm)

    图  9  振动台台面输出的加速度曲线

    Figure  9.  Acceleration curve of shaking table output

    图  10  试验工况2平面布置图(单位:cm)

    Figure  10.  Plan layout of shaking table test condition 2 (unit: cm)

    图  11  试验工况2正视图、左视图(单位:cm)

    Figure  11.  Front view and left view of shaking table test condition 2 arrangement(unit: cm)

    图  12  不同工况下水平加速度时程曲线

    a. 标准工况;b. 工况1砾石压重;c. 工况2宽排水板加固;d. 工况3窄排水板加固

    Figure  12.  Horizontal acceleration time course curve under different working conditions

    图  13  不同埋深位置的超孔压比时程曲线

    a. P1测点;b. P2测点;c. P3测点;d. P4测点

    Figure  13.  Time course curves of excess pore pressure ratio at different burial depths

    图  14  各工况管道竖向位移时程曲线(W2测点)

    Figure  14.  Time course curve of vertical displacement of pipe for each working condition(W2)

    表  1  模型试验工况

    Table  1.   Model test conditions

    工况 试验加固措施
    标准工况
    工况1 管道上部覆盖6cm厚的矩形砾石
    工况2 管道两侧等间距布置4个1cm宽的排水板
    工况3 管道两侧等间距布置4个0.5cm宽的排水板
    下载: 导出CSV

    表  2  各工况不同测点的超静孔压均值表

    Table  2.   The average value of excess static pore pressure at different measurement points for each working condition

    孔压计编号 P1 P2 P3 P4
    超静孔压均值/kPa 标准工况 2.151 1.578 1.292 0.560
    工况1 1.898 1.190 0.867 0.486
    工况2 1.032 0.874 0.668 0.413
    工况3 1.431 0.964 0.893 0.447
    变化率
    (对比标准工况)
    /%
    工况1 ↓11.76 ↓24.59 ↓32.89 ↓13.21
    工况2 ↓52.02 ↓44.61 ↓48.30 ↓26.25
    工况3 ↓33.47 ↓38.91 ↓30.88 ↓20.18
    下载: 导出CSV

    表  3  各工况不同测点的超静孔压下降速率表

    Table  3.   The drop rate of excess static pore pressure at different measurement points for each working condition

    孔压计编号 P1 P2 P3 P4
    超静孔压下降速率
    /Pa·s-1
    标准工况 / 9.97 4.01 -1.77
    工况1 / -4.73 -7.64 0.95
    工况2 / 52.96 23.55 7.59
    工况3 / 37.53 30.01 3.65
    下载: 导出CSV
  • Bai X, Tang X W, Hu J L. 2019. Numerical analysis of anti-liqefaction uplift of a shallow buried subway station in improved counter-measures[J]. Journal of Disaster Prevention and Mitigation Engineering, 39 (5): 778-786, 878. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXK201905012.htm
    Chen Y M, Liu H L, Zhao N. 2010. Laboratory test on anti-liquefaction characteristics of rigidity-drain pile[J]. China Civil Engineering Journal, 43 (12): 114-119. http://www.cnki.com.cn/Article/CJFDTotal-TMGC201012016.htm
    Hu J L, Liu H B. 2017. Numerical experiment of liquefaction-induced uplift response of metro station by improved gravelly soil method[J]. Tunnel Construction, 37 (S2): 82-86. http://en.cnki.com.cn/Article_en/CJFDTotal-JSSD2017S2012.htm
    Huang Y, Yu M, Bhattacharya S. 2013. Review on liquefaction-induced damages of soils and foundations during 2011 of the Pacific Coast of Tohoku Earthquake(Japan)[J]. Chinese Journal of Geotechnical Engineering, 35 (5): 834-840. http://d.wanfangdata.com.cn/periodical/ytgcxb201305005
    Kong X J, Zhou D G. 2007. Study on the uplift behavior of pipelines based on post-liquefaction deformation method[J]. Chinese Journal of Geotechnical Engineering, 29 (8): 1199-1204. http://www.researchgate.net/publication/288657376_Study_on_uplift_behavior_of_pipelines_based_on_post-liquefaction_deformation_method
    Koseki J, Matsuo O, Koga Y. 1997. Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake[J]. Soils & Foundations, 37 (1): 97-108. http://www.sciencedirect.com/science/article/pii/S0038080620312245
    Krishnaswamy N R, Isaac N T. 1994. Liquefaction potential of reinforced sand[J]. Geotextiles and Geomembranes, 13 (1): 23-41. doi: 10.1016/0266-1144(94)90055-8
    Krishnaswamy N R, Thomas Isaac N. 1995. Liquefaction analysis of saturated reinforced granular soils[J]. Journal of Geotechnical Engineering, 121 (9): 645-651. doi: 10.1061/(ASCE)0733-9410(1995)121:9(645)
    Li C S, Song J, Shi J S. 2003. Model test of underground pipeline anti-liquefaction measures in 2003[J]. Oil and Gas Storage and Transportation, 22 (7): 23-26.
    Maheshwari B K, Singh H P, Saran S. 2012. Effects of reinforcement on liquefaction resistance of Solani sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 138 (7): 831-840. doi: 10.1061/(ASCE)GT.1943-5606.0000645
    Shuai J, Wang X L, Ye Y X, et al. 2009. Stress analysis of pipeline subject to surface load[J]. Journal of China University of Petroleum(Natural Science Edition), 33 (2): 99-103. http://www.researchgate.net/publication/290297169_Stress_analysis_of_pipeline_subject_to_surface_load
    Sun S P, Han Y. 2003. State-of-the-art of the research on lifeline earthquake engineering[J]. China Civil Engineering Journal, 36 (5): 97-98. http://www.cnki.com.cn/Article/CJFDTotal-TMGC200305016.htm
    Towhata I, Vargas-Monge W, Orense R P, et al. 1999. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied sub-soil[J]. Soil Dynamics and Earthquake Engineering, 18 (5): 347-361. doi: 10.1016/S0267-7261(99)00008-1
    Wu J, Zhou Z F, Li M W, et al. 2019. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology, 27 (4): 890-902. http://www.researchgate.net/publication/340778795_Advance_on_the_methods_for_predicting_water_inflow_into_tunnels/download
    Yang D, Guo E D, Wang X J. 2010. Functional failure mode of the Wenchuan earthquake water supply system[J]. Journal of Catastro-phology, 25(1): 350.
    Zhan Z F, Qi S W, He N W, et al. 2019. Shaking table test study of homogeneous rock slope model under strong earthquake[J]. Journal of Engineering Geology, 27 (5): 946-954. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905002.htm
    Zhang X L. 2009. Numerical analysis of dynamic response of submarine pipeline and seabed under seismic loading[D]. Dalian: Dalian University of Technology.
    Zhang X W, Zhu W D, Li H, et al. 2020. Study on uplift behavior and anti-liquefaction measures for subway station during seismic loadings[J]. World Earthquake Engineering, 36 (1): 205-211.
    Zheng G, Gong X N, Xie Y L, et al. 2012. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 45 (2): 127-146. http://en.cnki.com.cn/Article_en/CJFDTOTAL-TMGC201202020.htm
    Zhou J, Li X, Ma H C, et al. 2003. Experimental study on dynamic characteristics of free spanning submarine pipelines due to earthquake[J]. Journal of Hydraulic Engineering, 34 (1): 12-16. http://en.cnki.com.cn/Article_en/CJFDTotal-SLXB200301002.htm
    Zhu D M, Foong S Y, Li Y A. 2020. Experimental study and numerical simulation of a horizontal ground heat exchanger under pavement[J]. Journal of Engineering Geology, 28 (5): 1084-1090.
    Zhu H H, Wang D Y, Wang B J, et al. 2020. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 28 (2): 317-326.
    Zou D G, Kong X J, Ling H L, et al. 2002. Experimental study on the uplift behavior of pipeline in saturated sand foundation and earthquake resistant measures during an earthquake[J]. Chinese Journal of Geotechnical Engineering, 24 (3): 323-326. http://d.wanfangdata.com.cn/Periodical/ytgcxb200206030
    Zou D G, Kong X J. 2010. Numerical analysis of mitigation methods against pipeline up-lifting in liquefiable soil[J]. Journal of Dalian University of Technology, 50 (3): 379-385. http://www.cqvip.com/QK/90724X/20103/33938189.html
    Zou D G. 2008. Study on uplifting mechanism and mitigation measure-ment of the pipelines buried at shallow depth during the earth-quake[D]. Dalian: Dalian University of Technology.
    白旭, 唐小微, 胡记磊. 2019. 浅埋地铁车站的抗液化上浮改进措施数值分析[J]. 防灾减灾工程学报, 39 (5): 778-786, 878. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905012.htm
    陈育民, 刘汉龙, 赵楠. 2010. 抗液化刚性排水桩振动台试验的数值模拟研究[J]. 土木工程学报, 43 (12): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201012016.htm
    胡记磊, 刘华北. 2017. 改进碎石排水措施的地铁结构液化上浮响应数值试验[J]. 隧道建设(中英文), 37 (S2): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2017S2012.htm
    黄雨, 于淼, Bhattacharya Subhamoy. 2013.2011年日本东北地区太平洋近海地震地基液化灾害综述[J]. 岩土工程学报, 35 (5): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305005.htm
    孔宪京, 邹德高. 2007. 基于液化后变形分析方法的地下管线上浮反应研究[J]. 岩土工程学报, 29 (8): 1199-1204. doi: 10.3321/j.issn:1000-4548.2007.08.012
    李长升, 宋杰, 石江水. 2003. 地下管道抗液化措施模型试验[J]. 油气储运, 22 (7): 23-26. doi: 10.3969/j.issn.1000-8241-D.2003.07.007
    帅健, 王晓霖, 叶远锡, 等. 2009. 地面占压荷载作用下的管道应力分析[J]. 中国石油大学学报(自然科学版), 33 (2): 99-103. doi: 10.3321/j.issn:1673-5005.2009.02.019
    孙绍平, 韩阳. 2003. 生命线地震工程研究述评[J]. 土木工程学报, 36 (5): 97-98. doi: 10.3321/j.issn:1000-131X.2003.05.017
    吴建, 周志芳, 李鸣威, 等. 2019. 隧洞涌水量预测计算方法研究进展[J]. 工程地质学报, 27 (4): 890-902. doi: 10.13544/j.cnki.jeg.2018-245
    杨丹, 郭恩栋, 王祥建, 等. 2010. 汶川地震供水系统功能失效模式[J]. 灾害学, 25(1): 350. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2010S1081.htm
    詹志发, 祁生文, 何乃武, 等. 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究[J]. 工程地质学报, 27 (5): 946-954. doi: 10.13544/j.cnki.jeg.2019168
    张西文, 朱伟东, 李虎, 等. 2020. 地铁车站液化上浮响应及抗浮措施研究[J]. 世界地震工程, 36 (1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001026.htm
    张小玲. 2009. 地震作用下海底管线及周围海床动力响应分析[D]. 大连: 大连理工大学.
    郑刚, 龚晓南, 谢永利, 等. 2012. 地基处理技术发展综述[J]. 土木工程学报, 45 (2): 127-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201202020.htm
    周晶, 李昕, 马恒春, 等. 2003. 地震时海底悬跨管道动力特性试验研究[J]. 水利学报, 34 (1): 12-16. doi: 10.3321/j.issn:0559-9350.2003.01.003
    朱敦铭, Foong Shen Yang, 李云安. 2020. 路面下水平地埋管热响应试验与数值模拟研究[J]. 工程地质学报, 28 (5): 1084-1090. doi: 10.13544/j.cnki.jeg.2020-310
    朱鸿鹄, 王德洋, 王宝军, 等. 2020. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 28 (2): 317-326. doi: 10.13544/j.cnki.jeg.2020-081
    邹德高, 孔宪京, Ling H I, 等. 2002. 地震时饱和砂土地基中管线上浮机理及抗震措施试验研究[J]. 岩土工程学报, 24 (3): 323-326. doi: 10.3321/j.issn:1000-4548.2002.03.012
    邹德高, 孙宪京. 2010. 液化土中管线抗上浮排水措施数值分析[J]. 大连理工大学学报, 50 (3): 379-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003014.htm
    邹德高. 2008. 地震时浅埋地下管线上浮机理及减灾对策研究[D]. 大连: 大连理工大学.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  45
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-12-13
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回