三维网络结构岩体力学架构与展望

陈剑平

陈剑平. 2022. 三维网络结构岩体力学架构与展望[J]. 工程地质学报, 30(1): 21-36. doi: 10.13544/j.cnki.jeg.2021-0728
引用本文: 陈剑平. 2022. 三维网络结构岩体力学架构与展望[J]. 工程地质学报, 30(1): 21-36. doi: 10.13544/j.cnki.jeg.2021-0728
Chen Jianping. 2022. Framework and expectation of three dimensional network structural rock mechanics[J]. Journal of Engineering Geology, 30(1): 21-36. doi: 10.13544/j.cnki.jeg.2021-0728
Citation: Chen Jianping. 2022. Framework and expectation of three dimensional network structural rock mechanics[J]. Journal of Engineering Geology, 30(1): 21-36. doi: 10.13544/j.cnki.jeg.2021-0728

三维网络结构岩体力学架构与展望

doi: 10.13544/j.cnki.jeg.2021-0728
基金项目: 

国家自然科学基金 41941017

国家自然科学基金 U1702241

详细信息
    作者简介:

    陈剑平(1957-),男,博士,教授,博士生导师,主要从事工程地质力学方面的科研与教学工作. E-mail: chenjp@jlu.edu.cn

  • * 第五届谷德振讲座特邀报告
  • 中图分类号: TU452

FRAMEWORK AND EXPECTATION OF THREE DIMENSIONAL NETWORK STRUCTURAL ROCK MECHANICS

Funds: 

the National Natural Science Foundation of China 41941017

the National Natural Science Foundation of China U1702241

  • 摘要: 三维网络结构岩体力学是岩体力学的一个分支。根据笔者20余年对裂隙岩体研究的心得,阐述了三维网络结构岩体力学的主要特点、研究对象,基本架构、主要研究内容与未来的展望。将岩体结构控制论归结为材料强度控制、结构类型控制、渗流通道控制和几何边界控制4个方面。技术层面的主要内容包括三维RQD估算、岩体表征单元估算技术、结构块体搜索技术、定向投影岩体结构面三维连通率估算技术以及岩体三维渗径搜索技术等。理论层面主要由球面投影理论、概率统计理论、随机动力学、几何拓扑理论、块体理论、非线性系统理论和裂隙岩体多尺度等效结构模型等构成。强调足量的随机不连续面地质信息的原位统计取样是三维网络结构岩体力学的基础,岩体随机不连续面三维网络数值模拟技术是三维网络结构岩体力学的核心技术。
    1)  * 第五届谷德振讲座特邀报告
  • 图  1  岩体结构类型

    a. 完整结构体; b. 块状结构体; c. 碎裂块状结构体; d. 碎裂-嵌镶结构体; e. 层状碎裂-散体结构体

    Figure  1.  Type of rock mass structure

    图  2  大西洋中贯穿大洋的洋中脊

    Figure  2.  The mid-ocean ridge of the Atlantic Ocean

    图  3  吉林蛟河核电站备选场址角闪黑云花岗岩体

    Figure  3.  Rockmass of hornblende biotite granite at the alternative site of Jiaohe nuclear power plant, Jilin Province

    图  4  无重介质条件下考虑结构面与否的应力场规律对比

    Figure  4.  Comparison stress field patterns with or without structural plane under no-gravitational condition

    图  5  岩体结构控制论基本构成

    Figure  5.  Basic composition of cybernetics of rock mass structure

    图  6  裂隙显著张开的岩体

    Figure  6.  Rock mass with significantly open fissures

    图  7  斜坡局部与整体破坏

    Figure  7.  Partial and whole failure of slope

    图  8  花岗岩体中的裂隙水流

    Figure  8.  Fissure flow in granitic rockmass

    图  9  岩体随机不连续面三维网络模型

    Figure  9.  Three dimensional network model of random discontinuity in rock mass

    图  10  三维网络结构岩体力学基本架构示意图

    Figure  10.  Schematic diagram of basic framework of three dimensional metwork structural rock mechanics

    图  11  受多组结构面控制的堵江滑坡残余滑面特征

    Figure  11.  Characteristics of residual slip surface of landslide dam controlled by multiple structural planes

    图  12  马吉坝址岩体结构示意图

    Figure  12.  Schematic diagram of rock mass structure of Maji dam site

    图  13  川藏铁路怒江特大桥超高陡复杂斜坡

    Figure  13.  Super high steep complex slope of Nujiang bridge on Sichuan Tibet Railway

    图  14  从完整至强裂隙化岩体的过度(引自Heok et al.(1980))

    Figure  14.  Transition from intact to strongly fractured rockmass (cite from Heok et al.(1980))

    图  15  三维网络结构岩体力学研究内容

    Figure  15.  Research content of three-dimensional network structural rock mechanics

  • Barton N R,Lien R,Lunde J. 1974. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics,6 (4): 189-239. doi: 10.1007/BF01239496
    Barton N, Lset F, Lien R, et al. 1980. Application of the Q-system in design decisions[C]//Subsurface space, 2 : 553-561.
    Bieniawski Z T. 1976. Rock mass classification in rock engineering[C]//Exploration for Rock Engineering, Proceeding of the Symposium: 97-106.
    Bieniawski Z T. 1989. Engineering rock mass classifications[M]. New York: Wiley.
    Chen J P, Lu B, Gu X M. 2005a. Determining three-dimensional connectivity of rock mass discontinuity by projection[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (15): 2617-2621.
    Chen J P Shi B F, Wang Q. 2005b. Study on the dominant orientations of random fractures of fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (2): 241-245.
    Chen J P, Lu B, Wang L K, et al. 2003. Automatic search for complex unstable rock block and the judgment of unstability mode-based on 3D network simulation of random fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 22 (7): 1126-1131.
    Chen J P, Lu B, Gu X M, et al. 2006. Numerical simulation study on 3D comprehensive shear strength of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (23): 1463-1468.
    Chen J P, Xiao S F, Wang Q, et al. 1996. Computer simulation principle of three-dimensional network of random discontinuities[M]. Changchun: Northeast Normal University Press.
    Chen J P. 2001a. 3-D net work numerical modeling technique for random discontinuities of rock mass[J]. Chinese Journal of Geotechnical Engineering, 23 (4): 397-402.
    Chen J P. 2001b. Towards understanding of dissipative structure deformation process of rock and soil mass[J]. Journal of Changchun University of Science and Technology, 31 (3): 288-293.
    Deere D U. 1964. Technical description of rock cores for engineering purposes[J]. Rock Mechanics and Engineering Geology, 1 (1): 17-22.
    Glaser S D, Doolin D M. 2000. New directions in rock mechanics—report on a forum sponsored by the American Rock Mechanics Associa-tion[J]. International Journal of Rock Mechanics and Mining Sciences, 37 (4): 683-698. doi: 10.1016/S1365-1609(00)00014-9
    Goodman R E, Shi G H. 1985. Block theory and its application to rock engineering[M]. New Jersey: Prentice-hall INC.
    Gu D Z. 1979. Fundamentals of rock engineering geomechanics[M]. Beijing: Science Press.
    Haken H. 1983. Synergetics: An introduction[M]. 3rd ed. Springer.
    Han X D, Chen J P, Wang Q, et al. 2016. A 3D fracture network model for the undisturbed rock mass at the Songta Dam Site based on small samples[J]. Rock Mechanics and Rock Engineering, 49 : 611-619. doi: 10.1007/s00603-015-0747-5
    Han Z H, Zhang L Q, Yuan G X. 2019. Rock mass quality assessment of borehole NRG01 in Bayannuorigong Alxa based on BQ system[J]. Journal of Engineering Geology, 27 (6): 1208-1215.
    Hill R. 1963. Elastic properties of reinforced solids: Some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 11 : 357-372. doi: 10.1016/0022-5096(63)90036-X
    Hoek E, Brown E T. 1980. Underground excavations in rock[M]. London: The Institution of Mining and Metallurgy.
    Jiang Z H. 1979. Introduction to topology[M]. Shanghai: Shanghai Science and Technology Press.
    Jing L R. 1986. Random discontinuity network and its applications in Discrete Element Method, Seepage Computation and Block Theory[C]//Proceeding of Symposium of 1st National Rcok Mechanics Numerical Computation and Simulation forum: 38-42.
    Karzulovic A, Goodman R E. 1985. Determination of principal joint frequencies[J]. International Journal of Rock Mechanics and Mining Sciences, 22 (6): 471-473. doi: 10.1016/0148-9062(85)90012-9
    Kulatilake P H S W, Wathugala D N, Stephansson O. 1993. Joint network modelling with a validation exercise in stripa mine, Sweden[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30 (5): 503-526.
    Kulatilake P H S W, Wu T H. 1984a. Estimation of mean trace length of discontinuities[J]. Rock Mechanics and Rock Engineering, 17 (4): 215-232. doi: 10.1007/BF01032335
    Kulatilake P H S W, Wu T H. 1984b. Sampling bias on orientation of discontinuities[J]. Rock Mechanics and Rock Engineering, 17 : 243-253. doi: 10.1007/BF01032337
    Kulatilake P H S W, Wu Tien H. 1986. Relation between discontinuity size and trace length[C]//Proceedings-Symposium on Rock Mechanics: 130-133.
    Kulatilake P H S W. 1990. Analysis of structural homogeneity of rock mass[J]. International Journal of Engineering Geology, 29 (4): 195-211.
    Li Y C, Chen J P, Zhou F J, et al. 2021. Stability evaluation of rock slope based on discrete fracture network and discrete element model: A case study for the right bank of Yigong Zangbu Bridge[J]. Acta Geotechnica, 8.
    Lu B, Chen J P, Shi B F, et al. 2004. Application of genetic algorithm to evaluate 3D persistence of jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (20): 3470-3474.
    Lu B, Chen J P, Wang L K, et al. 2002. Automatic seeking for complex finite rock block and judgment of its spatial geometrical shape based on 3D network modeling[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (8): 1232-1238.
    Lutton R J. 1969. Fractures and failure mechanics in loess and applications to rock mechamics[R]. US Waterways Experiment Station-Research Report S-69-1.
    Massanobu Oda. 1982. Fabric Tensor for discontinuous geological Material[J]. Soil and Foundations, 22 (4): 96-108. doi: 10.3208/sandf1972.22.4_96
    Mauldon M. 1998. Estimating mean fracture trace length and density from observation in convex windows[J]. Rock Mechanics and Rock Engineering, 31 (4): 201-216. doi: 10.1007/s006030050021
    Miller S M. 1983. A statistical method to evaluate homogeneity of structural populations[J]. Journal of the International Association for Mathematical Geology, 15 (2): 317-328. doi: 10.1007/BF01036073
    Muller J, Josef S. 1979. Contributions to engineering geology and slope movement investigations[C]//Rockslides and Avalanches, Part 2 : 95-109.
    Pan B T, Jing L R. 1989. Computer simulation methods and applications of statistical models of rockmass structure[C]//Advanced Rock Mechanics: 55-80.
    Pinto A, Da C H. 1993. Scale effects in rock mechanics[M]. Rotterdam: Balkema A A, Publishers.
    Priest S D, Hudson J A. 1981. Estimation of discontinuity spacing and trace length using scanline survey[J], International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract, 18 (3): 183-197
    Priest S D, Hudson J A. 1983a. Discontinuity frequency in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20 (2): 73-89.
    Priest S D, Samaniego A. 1983b. A model for the analysis of discontinuity characteristics in two dimensions[C]//Proceeding of Fifth International Congress on Rock Mechanics: 199-207.
    Priest S D, Hudson J A. 1976. Discontinuity spacings in rock[J]. International Journal of Rock Mechanics and Mining Sciences, 13 (5): 135-148. doi: 10.1016/0148-9062(76)90818-4
    Prigogine I, Lefever R. 1968. Symmetry breaking instabilities in dissipative systems. Ⅱ[J]. The Journal of Chemical Physics, 48(4): 1695. doi: 10.1063/1.1668896
    Shanley R J, Mahtab M A. 1975. Fractan: A computer code for analysis of clusters defined on the unit hemisphere[J]. Informational Journal of Rock Mechnics and Mining Sciences & Geomechanics Abstracts, 12(8): 107.
    René T. 1989. Structural stability and morphogenesis: An outline of a general theory of models[M]. Reading, MA: Addison-Wesley.
    Shanley R J, Mahtab M A. 1976. Delineation and analysis of clusters in orientation data[J]. Journal of the International Association for Mathematical Geology, 8 : 9-23. doi: 10.1007/BF01039681
    Shi G H, Pei J M. 1997. Translator, Numerical manifold method and discontinuous deformation analysis[M]. Beijing: Tsinghua University Press.
    Shi G H. 1977. Stereographic projection method for rock mass stability analysis[J]. Science China, 3 : 260-270.
    Song S Y, Wang Q, Chen J P, et al. 2015. Demarcation of homogeneous structural domains within a rock mass based on joint orientation and trace length[J]. Journal of Structural Geology, 80 : 16-24. doi: 10.1016/j.jsg.2015.08.006
    Sun Q H, Ma F S, Zhao H J, et al. 2019. Deformation and failure of surrounding rock considering weakening of mechanical parameters under seepage-damage-stress coupling[J]. Journal of Engineering Geology, 27 (5): 955-965.
    Sun Y K, Gu X. 1980. Application of stereographic projection in rock engineering geomechanics[M]. Beijing: Science Press.
    Tan C, Chen J P, Que J S, et al. 2012. Analysis of representative elementary volume for rock mass based on 3D fracture numerical network model and grey system theory[J]. Shuli Xuebao, 43 (6): 709-716.
    Terzaghi R D. 1965. Sources of error in joint surveys[J]. Gotechnique, 15 (4): 287-304.
    Wang F Y. 2006. Engineering application of rapid acquiring rock mass fractures information with digital close range photogrammetry[D]. Changchun: Jilin University.
    Wang G X, Xiao S F, Chen J P. 2002. Study on application of 3D network of discontinuities to RQD[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (12): 1761-1764.
    Wu F Q. 1993. Principles of statistical rock mechanics[M]. Beijing: China University of Geosciences Press.
    Xu L M, Chen J P, Wang Q, et al. 2013. Fuzzy c-means cluster analysis based on mutative scale chaos optimization algorithm for the grouping of discontinuity sets[J]. Rock Mechanics and Rock Engineering, 46 (1): 189-198. doi: 10.1007/s00603-012-0244-z
    Yang Q, Wang S G, Li C Y, et al. 2020. Internal driving force of deformation and failure of rock mass structure-unbalanced force[J]. Journal of Engineering Geology, 28 (2): 202-210.
    Zhang J. 2014. Three dimensional structure analysis for rock masses at right abutment in maji high arch dam[D]. Changchun: Jilin University.
    Zhang L, Einstein H H. 1998. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 31 (4): 217-235. doi: 10.1007/s006030050022
    Zhang Q, Chen J P, Yuan X Q, et al. 2013. Analysis of RVE size based on three-dimensional fracture numerical network modeling and stochastic mathematics[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 46 : 31-40. doi: 10.1144/qjegh2011-045
    Zhang Q, Wang Q, Chen J P. 2016. Estimation of mean trace length by setting scanlines in rectangular sampling window[J]. International Journal of Rock Mechanics and Mining Sciences, 84 : 74-79. doi: 10.1016/j.ijrmms.2016.02.002
    Zhang Q. 2015. Probabilistic estimation of discontinuity size in rock mass and study of application for three dimensional network model-Takin dam abutment rock mass in songta hydroeletric station as an example[D]. Changchun: Jilin University.
    Zhang W, Wang Q, Chen J P. 2012. Determination of the optimal thresh old and length measurements for RQD calculations[J]. International Journal of Rock Mechanics & Mining Sciences, 51 1-12.
    Zhao H J, Dwayne T, Guo J, et al. 2019. Numerical study on fracture propagation and interaction using continuous discontinuous failure method[J]. Journal of Engineering Geology, 27 (5): 933-945.
    Zhao H L, Chen J P. 2005. Searching for seepage path of 3D network in fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (4): 622-627.
    Zhou X, Chen J P, Chen Y, et al. 2017. Bayesian-based probabilistic kinematic analysis of discontinuity controlled rock slope instabi-lities[J]. Bulletin of Engineering Geology and the Environment, 76 (4): 1249-1262. doi: 10.1007/s10064-016-0972-5
    Zhu R M. 2000. Dynamics[M]. Wuhan: Huazhong University of Technology Press.
    陈剑平, 卢波, 谷宪民, 等. 2006. 节理岩体三维综合抗剪强度数值模拟研究[J]. 岩石力学与工程学报, 25 (23): 1463-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607024.htm
    陈剑平, 卢波, 谷宪民. 2005a. 用投影法求算岩体结构面三维连通率[J]. 岩石力学与工程学报, 24 (15): 2617-2621. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200515002.htm
    陈剑平, 石丙飞, 王清. 2005b. 工程岩体随机结构面优势方向的表示法初探[J]. 岩石力学与工程学报, 24 (2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20050200D.htm
    陈剑平, 卢波, 王良奎, 等, 2003. 复杂不稳定块体的自动搜索及其失稳方式的判断-基于随机不连续面三维网络模型[J]. 岩石力学与工程学报, 22 (7): 1126-1131. doi: 10.3321/j.issn:1000-6915.2003.07.015
    陈剑平, 肖树芳, 王清, 等. 1995. 随机不连续面三维网络计算机模拟原理[M]. 长春: 东北师范大学出版社.
    陈剑平. 2001a. 岩体随机不连续面三维网络数值模拟技术[J]. 岩土工程学报, 23 (4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104002.htm
    陈剑平. 2001b. 岩土体变形的耗散结构认识[J]. 长春科技大学学报, 31 (3): 288-293. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200103017.htm
    谷德振. 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社.
    韩振华, 张路青, 袁广祥. 2019. 基于BQ系统的阿拉善巴彦诺日公NRG01号钻孔岩体质量评价[J]. 工程地质学报, 27 (6): 1208-1215. doi: 10.13544/j.cnki.jeg.2017-183
    江泽涵. 1979. 拓扑学引论[M]. 上海: 上海科学技术出版社.
    井兰如. 1986. 岩体结构面随机网络及其在离散单元法, 在渗流计算以及块体分析理论中的应用[C]//第一届全国岩石力学数值计算及模拟试验讨论会论文集: 38-42
    卢波, 陈剑平, 石丙飞, 等. 2004. 用遗传算法求解节理岩体三维连通率[J]. 岩石力学与工程学报, 23 (20): 3470-3474. doi: 10.3321/j.issn:1000-6915.2004.20.014
    卢波, 陈剑平, 王良奎, 等. 2002. 基于三维网络模拟基础的复杂有限块体的自动搜索及其空间几何形态判定[J]. 岩石力学与工程学报21 (8): 1232-1238. doi: 10.3321/j.issn:1000-6915.2002.08.024
    潘别桐, 井兰如. 1989. 岩体结构概率模型和应用[C]//岩石力学新进展: 55-80
    石根华, 著. 裴觉民, 译. 1997. 数值流形方法与非连续变形分析[M]. 北京: 清华大学出版社.
    石根华. 1977. 岩体稳定分析的赤平投影方法[J]. 中国科学, 3 : 260-270. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197703006.htm
    孙琪皓, 马凤山, 赵海军, 等. 2019. 基于渗流-损伤-应力耦合作用下考虑力学参数弱化的巷道围岩变形破坏分析[J]. 工程地质学报, 27 (5): 955-965. doi: 10.13544/j.cnki.jeg.2019171
    孙玉科, 古迅. 1980. 赤平极射投影在岩体工程地质力学中的应用[M]. 北京: 科学出版社.
    谭春, 陈剑平, 阙金声, 等. 2012. 基于三维裂隙网络模拟和灰色理论的岩体表征单元体研究[J]. 水利学报, 43 (6): 709-716. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201206012.htm
    王凤艳. 2006. 数字近景摄影测量快速获取岩体裂隙信息的工程应用[D]. 长春: 吉林大学.
    王国欣、肖树芳、陈剑平. 2002. 不连续面三维网络在RQD中的应用研究[J]. 岩石力学与工程学报, 21 (12): 1761-1764. doi: 10.3321/j.issn:1000-6915.2002.12.003
    伍法权. 1993. 统计岩体力学原理[M]. 北京: 中国地质大学出版社.
    杨强, 王守光, 李超毅, 等. 2020. 岩体结构变形破坏的内在驱动力-不平衡力[J]. 工程地质学报, 28 (2): 202-210. doi: 10.13544/j.cnki.jeg.2020-095
    张晶. 2014. 马吉高拱坝右岸坝肩岩体三维结构分析[D]. 长春: 吉林大学.
    张奇. 2015. 岩体随机结构面尺寸概率估算及三维网络模型应用研究——以松塔水电站坝肩岩体为例[D]. 长春: 吉林大学.
    赵海军, Dwayne T, 郭捷, 等. 2019. 基于连续-非连续方法的裂隙破坏与相互作用研究[J]. 工程地质学报, 27 (5): 933-945. doi: 10.13544/j.cnki.jeg.2019161
    赵红亮, 陈剑平. 2005. 裂隙岩体三维网络流的渗透路径搜索[J]. 岩石力学与工程学报, 24 (4): 622-627. doi: 10.3321/j.issn:1000-6915.2005.04.013
    朱仁明. 2000. 动力学[M]. 武汉: 华中理工大学出版社.
  • 加载中
图(15)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  53
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回