基于电导性能的原状土柱降雨入渗规律研究

林昀昭 简文彬 豆红强 陈瑞敏 聂闻

林昀昭, 简文彬, 豆红强, 等. 2022. 基于电导性能的原状土柱降雨入渗规律研究[J]. 工程地质学报, 30(2): 394-406. doi: 10.13544/j.cnki.jeg.2021-0744
引用本文: 林昀昭, 简文彬, 豆红强, 等. 2022. 基于电导性能的原状土柱降雨入渗规律研究[J]. 工程地质学报, 30(2): 394-406. doi: 10.13544/j.cnki.jeg.2021-0744
Lin Yunzhao, Jian Wenbin, Dou Hongqiang, et al. 2022. Rainfall infiltration mechanisms of soil columns under conductivity[J]. Journal of Engineering Geology, 30(2): 394-406. doi: 10.13544/j.cnki.jeg.2021-0744
Citation: Lin Yunzhao, Jian Wenbin, Dou Hongqiang, et al. 2022. Rainfall infiltration mechanisms of soil columns under conductivity[J]. Journal of Engineering Geology, 30(2): 394-406. doi: 10.13544/j.cnki.jeg.2021-0744

基于电导性能的原状土柱降雨入渗规律研究

doi: 10.13544/j.cnki.jeg.2021-0744
基金项目: 

国家自然科学基金 41861134011

国家自然科学基金 U2005205

福州市科技局科技创新平台项目 2021-P-032

详细信息
    作者简介:

    林昀昭(1997-),男,硕士生,主要从事边坡工程方向研究. E-mail:Linyunzhao1997@163.com

    通讯作者:

    简文彬(1963-),男,博士,教授,博士生导师,主要从事岩土工程与工程地质研究. E-mail:jwb@fzu.edu.cn

  • 中图分类号: P642.3

RAINFALL INFILTRATION MECHANISMS OF SOIL COLUMNS UNDER CONDUCTIVITY

Funds: 

the National Natural Science Foundation of China 41861134011

the National Natural Science Foundation of China U2005205

Science and Technology Innovation Platform Project of Fuzhou Science and Technology Bureau 2021-P-032

  • 摘要: 我国东南沿海地质环境复杂脆弱,由台风暴雨引发的滑坡频频发生。雨水入渗到土体内可能导致坡体变形,进而产生滑坡、泥石流等灾害。以福建三明岩兜滑坡为研究对象,通过自行研制的人工降雨土柱入渗试验装置,对研究区滑坡的残积土柱进行了不同降雨强度下(20 mm·h-1、60 mm·h-1)的累次循环降雨实验,考虑了不同降雨量、降雨历时和雨停时间等工况,获得了干湿循环下土柱含水率、电阻率以及基质吸力变化等丰富的降雨入渗试验数据,并与现场原型测试结果验证。研究结果表明:(1) 累次降雨中,土柱上部传感器含水率峰值随着干湿循环次数增加缓慢降低,深部的土体则在累次降雨后,土体含水量逐渐累积,含水率峰值缓慢提高。(2) 原状土柱土体具有非均质性,不同深度土体电阻率大小不一。电阻率响应时间与含水率响应时间具有高度相关性,含水率变化时电阻率也几乎同时产生变化,但两者变化趋势相反。(3) 基质吸力在累次降雨雨停阶段回升缓慢,多次降雨过程中,由于前次降雨中留下的水分未完全排干,基质吸力在多次降雨的作用下降到0 kPa。(4) 基于Keller改进的Archie拓展模型对研究区土体电阻率含水率进行拟合,并用实测数据进行验证,误差较小。进一步结合Archie拓展模型与Green-Ampt、Philip入渗模型,得到基于电阻率的Green-Ampt与Philip入渗模型。研究成果有助于进一步揭示研究区降雨作用下坡残积土的电阻率演化规律,揭示坡残积土坡在累次降雨下的水分入渗规律,对台风暴雨型滑坡稳定性分析及监测预警具有重要的理论及实际意义。
  • 图  1  研究区概况图

    Figure  1.  Site photos of the study area

    图  2  原状土柱取样照片

    Figure  2.  Sampling photos of soil column

    图  3  降雨模拟系统主要设备

    Figure  3.  Main equipment of rainfall simulation

    图  4  土体监测元件

    Figure  4.  Soil monitoring sensors

    图  5  监测元件布置

    Figure  5.  Arrangement of sensors

    图  6  累次降雨下岩兜土柱含水率时变曲线

    a. 实验1累次降雨岩兜土柱含水率时变;b. 实验2累次降雨岩兜土柱含水率时变;c. 实验3累次降雨岩兜土柱含水率时变;d. 实验4累次降雨岩兜土柱含水率时变

    Figure  6.  Time varying curve of soil column moisture content under repeated rainfall

    图  7  累次降雨下岩兜土柱电阻率时变曲线

    a. 实验1累次降雨岩兜土柱电阻率时变;b. 实验2累次降雨岩兜土柱电阻率时变;c. 实验3累次降雨岩兜土柱电阻率时变;d. 实验4累次降雨岩兜土柱电阻率时变

    Figure  7.  Time varying curve of soil resistivity under repeated rainfall

    图  8  累次降雨下岩兜土柱基质吸力时变曲线

    a. 实验2累次降雨土柱基质吸力时变;b. 实验3累次降雨土柱基质吸力时变

    Figure  8.  Time varying curve of matrix suction of soil column under repeated rainfall

    图  9  残积土中电流的3种流通路径示意(据Rhoadels et al.(1989))

    Figure  9.  Schematic diagram of three flow paths of current in residual soil(according to Rhoadels et al.(1989))

    图  10  野外现场测试剖面图

    Figure  10.  Field section view

    图  11  残积土电阻率与含水率关系拟合曲线

    Figure  11.  Fitting curve between resistivity and water content of residual soil

    表  1  岩土物理力学性质参数

    Table  1.   Physical and mechanical properties of rock-soil

    干密度
    /g·cm-3
    天然密度
    /g·cm-3
    塑限
    /%
    液限
    /%
    孔隙比 饱和渗透系数
    /cm·s-1
    1.33 1.61 33.6 54.3 1.04 7.2×10-5
    下载: 导出CSV

    表  2  岩兜滑坡土柱降雨试验方案

    Table  2.   Soil column rainfall test scheme

    实验1 实验2 实验3 实验4
    第1次降雨 雨强/mm·h-1 20 20 60 60
    历时/h 3 3 3 3
    雨停/d
    1 1 1
    第2次降雨 雨强/mm·h-1 20 20 20 20
    历时/h 3 3 3 3
    雨停/d
    1 1 1
    第3次降雨 雨强/mm·h-1 20 60 60 60
    历时/h 9 3 3 3
    雨停后监测时间/h 12 12 12 12
    降雨历时/h 15 9 9 9
    降雨量/mm 300 300 420 420
    下载: 导出CSV

    表  3  实验1初始值与传感器响应时间表

    Table  3.   Initial value and sensors response hysteresis

    试验雨强 传感器编号 土体含水率 土体电阻率
    初始值
    /%
    响应时间
    /min
    初始值
    /Ω·m
    响应时间
    /min
    DT1 31.25 30 242.08 30
    DT2 36.44 40 200.48 40
    20 mm·h-1 DT3 29.69 50 188.08 50
    DT4 32.88 90 212.70 90
    DT5 34.55 110 215.52 110
    DT1 33.92 20 212.33 30
    DT2 38.08 40 191.98 40
    20 mm·h-1 DT3 30.72 50 156.81 50
    DT4 33.99 80 199.36 80
    DT5 35.72 90 196.60 90
    DT1 34.03 20 207.26 20
    DT2 38.12 30 198.48 30
    20 mm·h-1 DT3 31.19 50 146.86 50
    DT4 34.21 80 192.94 70
    DT5 36.07 90 191.79 80
    下载: 导出CSV

    表  4  含水率-电阻率参数拟合结果表

    Table  4.   Water content-resistivity parameter fitting results

    土体 拟合关系式 R2 偏差率
    岩兜坡积土 ρ=1344.03ρwn-1.59θ-1.55 0.95 10.9%
    下载: 导出CSV
  • Archie G E. 1942. The electrical resistivity log as aid in determining some reservoir characteristics[J]. Transactions of AIME, 146 : 54-62. doi: 10.2118/942054-G
    Bian S Q, Yang Y P, Ma J H, et al. 2020. Two-dimensional imaging study of internal moisture in loess slope: A case study of the Luojiapo landslide in Heifangtai terrace[J]. Journal of Engineering Geology, 28(4): 840-851. doi: 10.13544/j.cnki.jeg.2019-345
    Chambers J E, Gunn D A, Wilkinson P B, et al., 2014.4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment[J]. Near Surface Geophysics, 12(1): 61-72. doi: 10.3997/1873-0604.2013002
    Crawford M M, Bryson L S, Woolery E W, et al. 2019. Long-term landslide monitoring using soil-water relationships and electrical data to estimate suction stress[J]. Engineering Geology, 251 : 146-157. doi: 10.1016/j.enggeo.2019.02.015
    Dorofki M, Elshafie A H, Jaafar O, et al. 2014. A GIS-ANN-based ap-proach for enhancing the effect of slope in the modified green-ampt model[J]. Water Resources Management, 28(2): 391-406. doi: 10.1007/s11269-013-0489-7
    Gance J, Malet R, Supper P, et al. 2016. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides[J]. Journal of Applied Geophysics, 126 : 98-115. doi: 10.1016/j.jappgeo.2016.01.011
    Green W H, Ampt G A. 1911. Studies on soil physics Ⅰ. The flow of air and water through soils[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 4(7-8): 1-24. doi: 10.1515/ijnsns-2015-0060
    Guertault L, Fox G A. 2020. Performance of preferential flow models in predicting infiltration through a remolded soil with artificial macropores[J]. Vadose Zone Journal, 19(1): 1002-1014. doi: 10.1002/vzj2.20055
    Guo X J, Jia Y G, Huang X Y, et al. 2004. Application of Multi-Electrodes electrical method to detection of slide-face position[J]. Chinese Journal of Rock Mechanics and Engineering, 23(10): 1662-1669. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2004&filename=YSLX200410014
    Jian W B, Huang C H, Luo Y H, et al. 2020. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil[J]. Rock and Soil Mechanics, 41(4): 1123-1133. doi: 10.16285/j.rsm.2019.0491
    Jian W B, Xu Q, Tong L Y. 2013. Rainfall infiltration model of Huangtupo landslide in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 34(12): 3527-3533, 3548. http://ytlx.whrsm.ac.cn/EN/Y2013/V34/I12/3527
    Keller G V, Frischknecht F C. 1966. Electrical methods in geophysical prospecting[M]. New York: Pergamom Press.
    Lan H X, Wu F Q, Zhou C H, et al. 2003. Spatial analysis and prediction of rainfall induced landslide risk supported by GIS[J]. Chinese Science Bulletin, 48(5): 507-512. doi: 10.1360/csb2003-48-5-507
    Langhans C, Govers G, Diels J. 2013. Development and parameterization of an infiltration model accounting for water depth and rainfall inten-sity[J]. Hydrological Processes, 27(25): 3777-3790. doi: 10.1002/hyp.9491
    Lu S J, Wang Y, Wen M Z. 2010. Research on geological disasters caused by monsoon rainstorm and typhoon rainstorm in Fujian province[J]. Geology of Fujian, 29(S1): 77-86.
    Montoya J D, García E F, Vega C A. 2017. One-dimensional experimental study of rainfall infiltration into unsaturated soil[J]. Revista Facultad De Ingenieria, 2017(82): 74-81.
    Ning L, Jonathan W G. 2014. Slope hydrology and stability[M]. Jian W X, Wang J G, Hou L, translation. Beijing: Higher Education Press.
    Philip J R. 1957. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil Science, 83(5): 345-357. doi: 10.1097/00010694-195705000-00002
    Rhoades J D, Manteghi N A, Shouse P J, et al. 1989. Soil electrical conductivity and soil salinity: New formulations and calibrations[J]. Soil Science Society of America Journal, 53(2): 433-439. doi: 10.2136/sssaj1989.03615995005300020020x
    Shen J, Dong Y S, Jian W B, et al. 2020. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology, 28(6): 1290-1299. doi: 10.13544/j.cnki.jeg.2019-540
    Sun P, Wang G, Li R J, et al. 2019. Study on field test of loess slope under the artificial rainfall condition[J]. Journal of Engineering Geology, 27(2): 466-476.
    Wang Q J, Lai J B, Li Y. 2002. Comparison of Green-Ampt model with Philip Infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 18(2): 13-16. https://www.sciencedirect.com/science/article/pii/S1110492916300728
    Waxman M H. 1968. Electrical conductivities in oil-bearing shaly sands[J]. Society of Petroleum Engineers Journal, 8(2): 107-122. doi: 10.2118/1863-A
    Zha F S, Liu S Y, Du Y J, et al. 2007. The electrical resistivity characteristics of unsaturated clayey soil[J]. Rock and Soil Mechanics, 28(8): 1671-1676. https://www.researchgate.net/publication/286987671_The_electrical_resistivity_characteristics_of_unsaturated_clayey_Soil
    Zha F S, Liu S Y, Du Y J, et al. 2010. Prediction of matric suction of unsaturated soil based on electrical resistivity[J]. Rock and soil Mechanics, 31(3): 1003-1008. doi: 10.1029/2008WR007309
    Zha F S, Liu S Y, Du Y J. 2006a. Current status on use of electrical resisitivity method for ground improvement[J]. Journal of Engineering Geology, 14(5): 637-643. https://www.semanticscholar.org/paper/CURRENT-STATUS-ON-USE-OF-ELECTRICAL-RESISTIVITY-FOR-Yanjun/f03a1e40079ec8a1250f598fad7ca63265415371
    Zha F S, Liu S Y. 2006b. Discussion on resistivity theory of soil and its application[J]. Geotechnical Investigation & Surveying, 5(7): 10-15, 44. https://www.sciencedirect.com/science/article/pii/0039602892912343
    Zhang T L, Zhou A G, Shi B, et al. 2016. Physical experiment research on landslide deformation characteristics under the condition of the typhoon heavy rain[J]. Hydrogeology & Engineering Geology, 43(6): 127-132. https://www.swdzgcdz.com/en/article/id/20160620
    Zhuo W S. 2020. Influence on groundwater seepage system and stability of landslide under rainfall in Yaoshan village, Anxi county[J]. Journal of Engineering Geology, 28(6): 1311-1318.
    Ning L, Jonathan W G. 2014. 斜坡水文与稳定[M]. 简文星, 王菁莪, 侯龙译. 北京: 高等教育出版社.
    边世强, 杨云鹏, 马建花, 等. 2020. 黄土斜坡内部水分二维成像研究——以黑方台罗家坡滑坡为例[J]. 工程地质学报, 28(4): 840-851. doi: 10.13544/j.cnki.jeg.2019-345
    查甫生, 刘松玉, 杜延军, 等. 2007. 非饱和黏性土的电阻率特性及其试验研究[J]. 岩土力学, 28(8): 1671-1676. doi: 10.3969/j.issn.1000-7598.2007.08.026
    查甫生, 刘松玉, 杜延军, 等. 2010. 基于电阻率的非饱和土基质吸力预测[J]. 岩土力学, 31(3): 1003-1008. doi: 10.3969/j.issn.1000-7598.2010.03.058
    查甫生, 刘松玉, 杜延军. 2006a. 电阻率法在地基处理工程中的应用探讨[J]. 工程地质学报, 14(5): 637-643. http://www.gcdz.org/article/id/9019
    查甫生, 刘松玉. 2006b. 土的电阻率理论及其应用探讨[J]. 工程勘察, 5(7): 10-15, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200605002.htm
    郭秀军, 贾永刚, 黄潇雨, 等. 2004. 利用高密度电阻率法确定滑坡面研究[J]. 岩石力学与工程学报, 23(10): 1662-1669. doi: 10.3321/j.issn:1000-6915.2004.10.014
    简文彬, 黄聪惠, 罗阳华, 等. 2020. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学, 41(4): 1123-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004002.htm
    简文星, 许强, 童龙云. 2013. 三峡库区黄土坡滑坡降雨入渗模型研究[J]. 岩土力学, 34(12): 3527-3533, 3548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312028.htm
    兰恒星, 伍法权, 周成虎, 等. 2003. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报, 48(5): 507-512. doi: 10.3321/j.issn:0023-074X.2003.05.021
    鹿世瑾, 王岩, 文明章. 2010. 福建雨季暴雨及台风暴雨诱发地质灾害的研究[J]. 福建地质, 29(S1): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ2010S1016.htm
    沈佳, 董岩松, 简文彬, 等. 2020. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报, 28(6): 1290-1299. doi: 10.13544/j.cnki.jeg.2019-540
    孙萍, 王刚, 李荣建, 等. 2019. 降雨条件下黄土边坡现场试验研究[J]. 工程地质学报, 27(2): 466-476. doi: 10.13544/j.cnki.jeg.2018-031
    王全九, 来剑斌, 李毅. 2002. Green-Ampt模型与Philip入渗模型的对比分析[J]. 农业工程学报, 18(2): 13-16. doi: 10.3321/j.issn:1002-6819.2002.02.004
    张泰丽, 周爱国, 施斌, 等. 2016. 台风暴雨条件下滑坡变形特征物理试验研究[J]. 水文地质工程地质, 43(6): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606021.htm
    卓万生. 2020. 雨强对安溪县尧山村滑坡地下水渗流系统及稳定性的影响研究[J]. 工程地质学报, 28 (6): 1311-1318. doi: 10.13544/j.cnki.jeg.2020-150
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  17
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-02-06
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回