干燥和含水状态下片岩的特征强度与能量演化的各向异性规律及机制

尹晓萌 张爱明 王鲁男

尹晓萌,张爱明,王鲁男. 2023. 干燥和含水状态下片岩的特征强度与能量演化的各向异性规律及机制[J].工程地质学报, 31(5): 1573-1587. doi: 10.13544/j.cnki.jeg.2021-0763
引用本文: 尹晓萌,张爱明,王鲁男. 2023. 干燥和含水状态下片岩的特征强度与能量演化的各向异性规律及机制[J].工程地质学报, 31(5): 1573-1587. doi: 10.13544/j.cnki.jeg.2021-0763
Yin Xiaomeng, Zhang Aiming, Wang Lunan. 2023. Anisotropic behavior and mechanism of dry and water-bearing schist in terms of characteristic strength and energy evolution [J]. Journal of Engineering Geology, 31(5): 1573-1587. doi: 10.13544/j.cnki.jeg.2021-0763
Citation: Yin Xiaomeng, Zhang Aiming, Wang Lunan. 2023. Anisotropic behavior and mechanism of dry and water-bearing schist in terms of characteristic strength and energy evolution [J]. Journal of Engineering Geology, 31(5): 1573-1587. doi: 10.13544/j.cnki.jeg.2021-0763

干燥和含水状态下片岩的特征强度与能量演化的各向异性规律及机制

doi: 10.13544/j.cnki.jeg.2021-0763
基金项目: 

国家自然科学基金 41807240

详细信息
    通讯作者:

    尹晓萌(1988-),男,博士,副教授,主要从事工程岩土体稳定性研究. E-mail: xiaomengyin123@163.com

  • 中图分类号: P642.3

ANISOTROPIC BEHAVIOR AND MECHANISM OF DRY AND WATER-BEARING SCHIST IN TERMS OF CHARACTERISTIC STRENGTH AND ENERGY EVOLUTION

Funds: 

the National Natural Science Foundation of China 41807240

  • 摘要: 以石英云母片岩为对象,采用单轴压缩试验,探讨这类脆性片理化岩石在干燥和含水状态下的特征强度与能量演化的加载方向效应,并结合微观组构特征与宏观破坏模式,揭示片岩力学行为各向异性的机制。结果表明:(1)加载过程中,能量演化曲线与岩石的变形损伤变化有较好的对应关系,据此可快速准确地确定岩石的特征强度;(2)干燥和含水状态下片岩的特征强度皆表现为α=90°>α=0°>α=30°,其中,α=30°时,片岩强度对水的响应更为敏感,水对片岩的强度各向异性有一定增强作用;(3)α=90°试样的能量存储与耗散始终高于α=0°、30°试样,但相比α=90°而言,α=30°时,片岩的岩爆倾向性更强,岩石的损伤发展较为迅速;(4)岩石中的片状矿物和微裂隙为水的润滑、软化、水楔作用提供了物质基础,占主导地位的水作用随加载方向有所不同;(5)岩石内的片状矿物定向排列与软硬层近互层状分布的微观结构决定了裂纹产生与扩展机制的加载方向效应,本质上控制着岩石的强度与能量的各向异性。
  • 图  1  片岩样品

    Figure  1.  Schist sample

    图  2  弱面角度示意

    Figure  2.  Diagrammatic drawing of weak plane orientation

    图  3  圆柱状片岩试样

    Figure  3.  Cylindrical schist specimens

    图  4  片岩试样的应力-应变曲线

    a. 干燥状态;b. 含水状态

    Figure  4.  Stress-strain curves of schist specimens

    图  5  岩石加卸载过程中的能量关系

    Figure  5.  Energy relation in loading and unloading process for rocks

    图  6  片岩试样的能量演化曲线

    a. α=0°(干燥); b.α=30°(干燥); c. α=90°(干燥); d. α=0°(含水); e. α=30°(含水); f. α=90°(含水)

    Figure  6.  Energy evolution curves of schist specimens

    图  7  利用应变测量法确定岩石特征强度的示意图

    曲线1为轴向应力-轴向应变曲线,2为轴向刚度-轴向应力曲线,3为体积应变-轴向应变曲线;箭头指示数值增加方向

    Figure  7.  Schematic diagram of determining characteristic strength of rocks using the method of strain measurement

    图  8  软化系数与片理角的关系

    Figure  8.  Variation of softening coefficient with the schistosity angle

    图  9  水影响系数与片理角的关系

    Figure  9.  Variation of water influence coefficient with the schistosity angle

    图  10  压缩作用下岩石(含水状态α=90°)的能量损伤演化阶段

    Figure  10.  Evolution stage of energy damage for compressed rocks

    图  11  片岩试样的能量损伤演化曲线

    Figure  11.  Energy damage evolution curves of schist specimens

    图  12  片岩样品的矿物分布:Ms. 云母;Qtz. 石英;Ab. 长石;Cal. 方解石

    Figure  12.  Mineral distribution of schist sample: Ms. Muscovite,Qtz. Quartz,Ab. Feldspar,Cal. Calcite

    图  13  片岩样品的缺陷分布

    Figure  13.  Defects distribution of schist sample

    图  14  干燥样品的宏观破坏形态

    Figure  14.  Macroscopic failure mode of dry sample

    图  15  不同方向的压缩荷载作用下片岩裂纹扩展与宏观破坏的示意图

    a. α=0°;b. α=30°;c. α=90°

    Figure  15.  Schematic diagram of crack propagation and macroscopic failure of schist subjected to compression in different directions

    图  16  沿云母解理面的滑开型起裂

    Figure  16.  Crack initiation of sliding-tension along the cleavage surfaces of mica

    图  17  片状云母对裂纹扩展的阻碍作用

    (根据Rawling et al.(2002)绘制)

    Figure  17.  Inhibitory effect of flaky mica on crack propagation

    (plotted according to Rawling et al.(2002))

    表  1  片岩样品的特征强度值

    Table  1.   Characteristic strength value of schist specimens

    样品标号 特征强度值(能量曲线法) 特征强度值(应变测量法)
    σcc σci σcd σf σcc σci σcd σf
    D0 46.41 73.64 92.20 97.96 47.83 68.05 52.26* 97.96
    D30 33.03 45.29 55.50 57.80 31.13 44.23 53.78 57.80
    D90 61.84 92.54 110.88 121.37 61.43 90.32 111.38 121.37
    S0 27.24 36.38 39.85 40.68 26.06 37.12 29.43* 40.68
    S30 12.63 17.58 18.97 19.57 12.16 16.52 16.65 19.57
    S90 24.53 41.15 53.31 62.31 25.64 41.89 56.07 62.31
    样品标号中的首字母代表样品状态(D表示干燥状态,S表示含水状态),数字代表片理角度,下同。带“*”的表示异常值
    下载: 导出CSV

    表  2  干燥试样在临界应力点处的能量值

    Table  2.   Energy values of dry specimens corresponding to the critical stress points

    临界应力σ 样品标号和能量值/kJ·m-3
    D0 D30 D90
    U Ue Ud U Ue Ud U Ue Ud
    σcc 26.49 21.40 5.09 21.07 16.96 4.11 87.40 61.36 26.04
    σci 53.43 48.25 5.18 36.93 32.81 4.12 161.09 135.05 26.04
    σcd 87.24 81.28 5.96 53.64 49.16 4.48 227.40 200.17 27.23
    σf 128.32 91.44 36.88 61.79 54.68 7.11 302.13 237.70 64.43
    下载: 导出CSV

    表  3  含水试样在临界应力点处的能量值

    Table  3.   Energy values of water-bearing specimens corresponding to the critical stress points

    临界应力σ 样品标号和能量值/kJ·m-3
    S0 S30 S90
    U Ue Ud U Ue Ud U Ue Ud
    σcc 19.46 14.73 4.73 15.04 11.73 3.31 19.63 13.45 6.18
    σci 31.12 26.28 4.84 25.59 22.24 3.35 44.08 37.72 6.36
    σcd 36.37 31.50 4.87 29.38 25.95 3.43 72.99 63.46 9.53
    σf 38.23 32.78 5.45 31.91 27.75 4.16 120.52 86.59 33.93
    下载: 导出CSV
  • Baud P, Zhu W L, Wong T F. 2000. Failure mode and weakening effect of water on sandstone[J]. Journal of Geophysical Research Solid Earth, 105 (B7): 16371-16389. doi: 10.1029/2000JB900087
    Bruno M S, Nakagawa F M. 1991. Pore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 28 (4): 261-273.
    Chang C D, Haimon B. 2000. True triaxial strength and deformability of the German Continental Deep Drilling Program(KTB)deep hole amphibolite[J]. Journal of Geophysical Research Solid Earth, 105 (B8): 18999-19013. doi: 10.1029/2000JB900184
    Chen Z Q, He C, Dong W J, et al. 2018. Physico-mechanical properties and its energy damage evolution mechanism of the Jurassic and Cretaceous argillaceous sandstone in Northern Xinjiang[J]. Rock and Soil Mechanics, 39 (8): 2873-2885.
    Cho J W, Kim H, Jeon S, et al. 2012. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics & Mining Sciences, 50 : 158-169.
    Deng H F, Hu Y, Li J L, et al. 2016. The evolution of sandstone energy dissipation under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (S1): 2869-2875.
    Detournay E, Cheng A H D, Roegiers J C, et al. 1989. Poroelasticity considerations in in situ stress determination by hydraulic fracturing[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 26 (6): 507-513.
    Diederichs M S, Kaiser P K, Eberhardt E. 2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 41 (5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003
    Eberhardt E, Stead D, Stimpson B, et al. 1998. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 35 (2): 222-233. doi: 10.1139/t97-091
    Federico A, Stefano Z, Giovanni B. 2014. Fabric controls on the brittle failure of folded gneiss and schist[J]. Tectonophysics, 637 : 150-162. doi: 10.1016/j.tecto.2014.10.006
    Gao C Y, Xu J, Li Z H, et al. 2011. Experimental study of anisotropically mechanical characteristics of sandy slate in Xuefeng Mountain tunnel[J]. Rock and Soil Mechanics, 32 (5): 1360-1364. doi: 10.3969/j.issn.1000-7598.2011.05.013
    Griffith A A. 1921. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221 : 163-198.
    Hoek E, Bieniawski Z T. 1965. Brittle fracture propagation in rock under compression[J]. International Journal of Fracture Mechanics, 1 (3): 137-155. doi: 10.1007/BF00186851
    Hou Z Q, Wang Y, Liu D Q, et al. 2019. Investigation of the anisotropic mechanical behaviors and energy evolution during uniaxial deformation of interbedded marble[J]. Journal of Mining & Safety Engineering, 36 (4): 794-804.
    Hu J, He M C, Li Z H, et al. 2019. Experimental study of strain rockburst of anisotropic bedded sandstone[J]. Journal of China University of Mining & Technology, 48 (4): 735-741.
    Hudson J A, Brown E T, Fairhurst C. 1972. Shape of the complete stress-strain curve for rock[C]//Proceedings of the 13th U.S. Symposium on Rock Mechanics. Urbana: [s. n. ]: 773-795.
    Jia C G, Chen J H, Guo Y T, et al. 2013. Research on mechanical behaviors and failure modes of layer shale[J]. Rock and Soil Mechanics, 34 (S2): 57-61.
    Lan H X, Martin C D, Hu B. 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research, 115(B01202): 1-14.
    Liang C, Wu S, Li X, et al. 2015. Effects of strain rate on fracture characteristics and mesoscopic failure mechanisms of granite[J]. International Journal of Rock Mechanics and Mining Sciences, 76 : 146-154. doi: 10.1016/j.ijrmms.2015.03.010
    Liu Z X, Wang W, Luo J A, et al. 2020. Method of energy evolution of rock under uniaxial compression test[J]. Journal of China Coal Society, 45 (9): 3131-3139.
    Martin C D, Chandler N A. 1994. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 31 (6): 643-659.
    Martin C D. 1993. The strength of massive Lac du Bonnet granite around underground openings[D]. Manitoba: University of Manitoba.
    Meng Q B, Wang C K, Huang B X, et al. 2020. Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 39 (10): 2047-2059.
    Miao S J, Liu Z J, Zhao X G, et al. 2021. Energy dissipation and damage characteristics of Beishan granite under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (5): 928-938.
    Nasseri M, Rao K S, Ramamurthy T. 2003. Anisotropic strength and deformational behavior of Himalayan schists[J]. International Journal of Rock Mechanics and Mining Sciences, 40 (1): 3-23. doi: 10.1016/S1365-1609(02)00103-X
    Niandou H, Shao J F, Henry J P, et al. 1997. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 34 (1): 3-16. doi: 10.1016/S1365-1609(97)80029-9
    Ramamurthy T, Rao G V, Singh J. 1993. Engineering behaviour of phyllites[J]. Engineering Geology, 33 (3): 209-225. doi: 10.1016/0013-7952(93)90059-L
    Rawling G C, Baud P, Tengfong W. 2002. Dilatancy, brittle strength, and anisotropy of foliated rocks: experimental deformation and micromechanical modeling[J]. Journal of Geophysical Research, 107 (B10): 2234-2247.
    Roy D G, Singh T N, Kodikara J, et al. 2017. Effect of water saturation on the fracture and mechanical properties of sedimentary rocks[J]. Rock Mechanics and Rock Engineering, 50 (10): 1-16.
    Sagong M, Bobet A. 2002. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 39 (2): 229-241. doi: 10.1016/S1365-1609(02)00027-8
    Schmidtke R H, Lajtai E Z. 1985. The long-term strength of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 22 (6): 461-465.
    Sha P, Zhao Y W, Gao S Y, et al. 2020. Improvement of BQ classification for layered rock mass quality index in tunnel engineering[J]. Journal of Engineering Geology, 28 (5): 942-950.
    Shea W T, Kronenberg A K. 1993. Strength and anisotropy of foliated rocks with varied mica contents[J]. Journal of Structural Geology, 15(9-10): 1097-1121. doi: 10.1016/0191-8141(93)90158-7
    Wang C L, Hou X L, Li H T, et al. 2019. Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone samples under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 41 (11): 2120-2125.
    Wang G L, Wen X X, Zhang L. 2020. Dip effect of energy evolution mechanism of jointed sandstone under uniaxial compression[J]. Journal of Central South University(Science and Technology), 51 (7): 1913-1923.
    Wang L J, Zhang B, Qian Z K, et al. 2019. Experimental investigation of the acoustics emission characteristics of two types of brittle rocks under uniaxial compression[J]. Journal of Engineering Geology, 27 (4): 699-705. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201904001.htm
    Wong L N Y, Einstein H H. 2009. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 46 (2): 239-249. doi: 10.1016/j.ijrmms.2008.03.006
    Xie H P, Ju Y, Li L Y. 2005. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    Yang S Q, Xu W Y, Su C D. 2007. Study on the deformation failure and energy properties of marble specimen under triaxial compression[J]. Engineering Mechanics, 24 (1): 136-142.
    Yang X B, Cheng H M, Lu J Q, et al. 2019. Energy consumption ratio evolution law of sandstones under triaxial cyclic loading[J]. Rock and Soil Mechanics, 40 (10): 3751-3766.
    Yin X M, Yan E C, Huang S P, et al. 2019a. Influence of microscopic characteristics on the anisotropy of crack initiation stress and crack propagation of schist[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (7): 1373-1384.
    Yin X M, Yan E C, Wang L N, et al. 2019b. Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism[J]. Rock and Soil Mechanics, 40 (6): 2221-2230.
    Yin X M, Yan E C, Wang L N, et al. 2020. Anisotropy of quartz mica schist based on quantitative extraction of fabric information[J]. Bulletin of Engineering Geology and the Environment, 79 (5): 2439-2456. doi: 10.1007/s10064-019-01699-5
    You M Q, Hua A Z. 2002. Energy analysis on failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 21 (6): 778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004
    Zhang P. 2018. Study on the mechanism of rock burst at qinling diversion tunnel in the yinhan-weihe river project[D]. Chengdu: Southwest Jiaotong University.
    Zhang X P, Wong L N Y, Wang S J, et al. 2011. Engineering properties of quartz mica schist[J]. Engineering Geology, 121(3-4): 135-149. doi: 10.1016/j.enggeo.2011.04.020
    Zhang Z J, Zhu J B, Wang B, et al. 2018. The damage and shear dilation property evolution based on energy dissipation mechanism of gneissic granite[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (S1): 3441-3448.
    Zhao Z, Yang J, Zhang D, et al. 2016. Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content[J]. Rock Mechanics & Rock Engineering, 50 (2): 1-7.
    Zhou C Y, Shu D L, Liu Z. 2019. Discussion on energy dissipation mechanism in seepage-chemical damage-softening process of soft rock[J]. Journal of Engineering Geology, 27 (3): 477-486.
    陈子全, 何川, 董唯杰, 等. 2018. 北疆侏罗系与白垩系泥质砂岩物理力学特性对比分析及其能量损伤演化机制研究[J]. 岩土力学, 39 (8): 2873-2885. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808021.htm
    邓华锋, 胡玉, 李建林, 等. 2016. 循环加卸载过程中砂岩能量耗散演化规律[J]. 岩石力学与工程学报, 35 (S1): 2869-2875. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm
    高春玉, 徐进, 李忠洪, 等. 2011. 雪峰山隧道砂板岩各向异性力学特性的试验研究[J]. 岩土力学, 32 (5): 1360-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105013.htm
    侯志强, 王宇, 刘冬桥, 等. 2019. 层状大理岩破裂过程力学特性与能量演化各向异性研究[J]. 采矿与安全工程学报, 36 (4): 794-804. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904020.htm
    胡杰, 何满潮, 李兆华, 等. 2019. 各向异性层状砂岩应变岩爆试验研究[J]. 中国矿业大学学报, 48 (4): 735-741. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201904006.htm
    贾长贵, 陈军海, 郭印同, 等. 2013. 层状页岩力学特性及其破坏模式研究[J]. 岩土力学, 34 (S2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2010.htm
    刘之喜, 王伟, 罗吉安, 等. 2020. 岩石单轴压缩试验中能量演化分析方法[J]. 煤炭学报, 45 (9): 3131-3139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009010.htm
    孟庆彬, 王从凯, 黄炳香, 等. 2020. 三轴循环加卸载条件下岩石能量演化及分配规律[J]. 岩石力学与工程学报, 39 (10): 2047-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010009.htm
    苗胜军, 刘泽京, 赵星光, 等. 2021. 循环荷载下北山花岗岩能量耗散与损伤特征[J]. 岩石力学与工程学报, 40 (5): 928-938. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105007.htm
    沙鹏, 赵逸文, 高书宇, 等. 2020. 隧道层状岩体质量评价的BQ分级改进[J]. 工程地质学报, 28 (5): 942-950. doi: 10.13544/j.cnki.jeg.2020-156
    王春来, 侯晓琳, 李海涛, 等. 2019. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报, 41 (11): 2120-2125. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911021.htm
    王桂林, 文兴祥, 张亮. 2020. 单轴压缩下节理砂岩能量演化机制倾角效应[J]. 中南大学学报(自然科学版), 51 (7): 1913-1923. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202007017.htm
    王林均, 张搏, 钱志宽, 等. 2019. 单轴压缩下两类脆性岩石声发射特征试验研究[J]. 工程地质学报, 27 (4): 699-705. doi: 10.13544/j.cnki.jeg.2019-025
    谢和平, 鞠杨, 黎立云. 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 24 (17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
    杨圣奇, 徐卫亚, 苏承东. 2007. 大理岩三轴压缩变形破坏与能量特征研究[J]. 工程力学, 24 (1): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802010.htm
    杨小彬, 程虹铭, 吕嘉琦, 等. 2019. 三轴循环荷载下砂岩损伤耗能比演化特征研究[J]. 岩土力学, 40 (10): 3751-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910008.htm
    尹晓萌, 晏鄂川, 黄少平, 等. 2019a. 细观特征对片岩起裂应力与裂纹扩展各向异性的影响[J]. 岩石力学与工程学报, 38 (7): 1373-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907008.htm
    尹晓萌, 晏鄂川, 王鲁男, 等. 2019b. 水与微观结构对片岩波速各向异性特征的影响及其机制研究[J]. 岩土力学, 40 (6): 2221-2230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906021.htm
    尤明庆, 华安增. 2002. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 21 (6): 778-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200206004.htm
    张鹏. 2018. 引汉济渭工程秦岭引水隧洞岩爆发生机理研究[D]. 成都: 西南交通大学.
    张振杰, 朱杰兵, 汪斌, 等. 2018. 基于能量耗散机制的片麻状花岗岩损伤与剪胀演化规律[J]. 岩石力学与工程学报, 37 (S1): 3441-3448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1034.htm
    周翠英, 苏定立, 刘镇. 2019. 软岩渗流-化学-损伤软化过程中能量耗散机制[J]. 工程地质学报, 27 (3): 477-486. doi: 10.13544/j.cnki.jeg.2018-338
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  17
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2021-12-06
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回