岩体多尺度异质性及其力学行为

兰恒星 包含 孙巍锋 刘世杰

兰恒星, 包含, 孙巍锋, 等. 2022. 岩体多尺度异质性及其力学行为[J]. 工程地质学报, 30(1): 37-52. doi: 10.13544/j.cnki.jeg.2021-0789
引用本文: 兰恒星, 包含, 孙巍锋, 等. 2022. 岩体多尺度异质性及其力学行为[J]. 工程地质学报, 30(1): 37-52. doi: 10.13544/j.cnki.jeg.2021-0789
Lan Hengxing, Bao Han, Sun Weifeng, et al. 2022. Multi-scale heterogeneity of rock mass and its mechanical behavior[J]. Journal of Engineering Geology, 30(1): 37-52. doi: 10.13544/j.cnki.jeg.2021-0789
Citation: Lan Hengxing, Bao Han, Sun Weifeng, et al. 2022. Multi-scale heterogeneity of rock mass and its mechanical behavior[J]. Journal of Engineering Geology, 30(1): 37-52. doi: 10.13544/j.cnki.jeg.2021-0789

岩体多尺度异质性及其力学行为

doi: 10.13544/j.cnki.jeg.2021-0789
基金项目: 

国家自然科学基金 41941019

国家自然科学基金 42177142

国家重点研发计划 2019YFC1520601

详细信息
    通讯作者:

    兰恒星(1972-),男,博士,研究员,主要从事岩体工程地质力学与灾害工程地质方面的研究工作. E-mail: lanhx@igsnrr.ac.cn

  • * 第五届谷德振讲座特邀报告
  • 中图分类号: TU452

MULTI-SCALE HETEROGENEITY OF ROCK MASS AND ITS MECHANICAL BEHAVIOR

Funds: 

the National Natural Science Foundation of China 41941019

the National Natural Science Foundation of China 42177142

National Key R & D Program of China 2019YFC1520601

  • 摘要: 异质性是岩体的重要属性之一,从岩体的物质组成到结构特征,再到微宏观力学行为表现,异质性现象普遍存在。本文在梳理已有研究成果的基础上,从岩体的细微观异质性、结构面异质性和宏观异质性3个不同的尺度,对异质性的产生原因、表现特征、力学效应和时空演化规律等进行阐述,并介绍了相关研究方法以及异质性在不同尺度上的差异表现。岩体异质性的研究,是岩体工程地质力学理论体系的延伸,而多尺度的研究方法也成为全面揭示岩体变形破坏机制的一种有效手段。
    1)  * 第五届谷德振讲座特邀报告
  • 图  1  不同时期花岗岩三轴压缩应力-应变曲线

    a. 燕山期花岗岩应力-应变曲线(样品取自金沙江);b. 喜山期花岗岩应力-应变曲线(样品取自林芝)

    Figure  1.  Stress-strain curves of granite formed in different period under triaxial compression

    图  2  岩体异质性与尺度关系(改自Heok et al.(1980))

    Figure  2.  Relationship between rock mass heterogeneity and scale(modified from Heok et al.(1980))

    图  3  岩体微观尺度扫描照片

    Figure  3.  Scanning photos of rock mass at micro scale

    图  4  两种不同颗粒粒径大小的花岗岩GBM-UDEC模型(Lan et al., 2010)

    Figure  4.  GBM-UDEC model of two different granites with different particle sizes(Lan et al., 2010)

    图  5  两种不同异质性岩石的GBM三维模型(Lan et al., 2013b)

    Figure  5.  GBM 3D model of two heterogeneous rocks(Lan et al., 2013b)

    图  6  压缩载荷下完整岩石试样的破坏阶段(Martin et al., 2009)

    Figure  6.  Failure stage of intact rock under compression load(Martin et al., 2009)

    图  7  均质性样品(上)和异质性样品(下) 在矿物颗粒层面的应力集中(Lan et al., 2013b)

    Figure  7.  Stress concentration of homogeneous samples(top) and heterogeneous samples(bottom) at mineral particle scale(Lan et al., 2013b)

    图  8  花岗岩微观拉伸全过程显微镜照片

    Figure  8.  Microscopic photos of microtensile process of granite

    图  9  微裂隙发育体系相互作用模式(Nicksiar et al., 2013)

    a. 滑动开裂模型;b. 力链开裂模型

    Figure  9.  Interaction mode of microstructure developing system(Nicksiar et al., 2013)

    图  10  微观异质性控制裂纹的产生扩展、累积、相互作用过程(Lockner et al., 1992Lan et al., 2010)

    Figure  10.  Micro heterogeneity controls the process of crack generation,propagation, accumulation and interaction(Lockner et al., 1992; Lan et al., 2010)

    图  11  纳米尺度页岩微观裂隙SEM图像(Lan et al., 2019)

    Figure  11.  SEM images of micro-fractures in shale at nano-scale(Lan et al., 2019)

    图  12  细微观异质性弱化起裂点强度机理(Martin et al., 1994)

    a. 起裂强度和各向异性指数关系;b. 黏聚强度丧失和摩擦强度活化机制

    Figure  12.  Mechanism of micro heterogeneity weakening the strength of crack initiation(Martin et al., 1994)

    图  13  用于模拟地下硐室的跨尺度GBM-UDEC模型(Lan et al., 2013)

    Figure  13.  Cross scale GBM-UDEC for simulating underground construction(Lan et al., 2013)

    图  14  现场尺度的完整岩体的变形破坏过程(Lan et al., 2013)

    Figure  14.  Deformation and failure processes of intact rock mass at field scale(Lan et al., 2013)

    图  15  结构面几何形貌异质性及量化表征

    Figure  15.  Geometry heterogeneity of structural plane and its quantitative characterization

    图  16  同组结构面形貌与各向异性形貌参数

    Figure  16.  Morphology and anisotropic morphology parameters of structural plane belonging to the same group

    图  17  结构面各向异性剪切与剪切力学参数

    Figure  17.  Anisotropic shear and shear mechanical parameters of joints

    图  18  结构面剪切破坏损伤区与峰后异质性弱化

    Figure  18.  Shear damage zone and weakened post-peak heterogeneity of joint

    图  19  垂直节理发育特征与异质性分布演化

    Figure  19.  Development characteristics and heterogeneity distribution evolution of vertical joints

    图  20  节理走向的空间分布特征

    Figure  20.  Spatial distribution characteristics of joint strike

    图  21  垂直节理的空间异质分布特征

    Figure  21.  Spatial heterogeneity distribution of vertical joints

    图  22  垂直节理异质性发育的时间效应

    Figure  22.  Time effect of heterogeneity development of vertical joints

    图  23  垂直节理发育影响因素与饱和现象

    Figure  23.  Influence factors and saturation phenomenon of vertical joint development

  • Agharazi A,Tannant D D,Martin C D. 2012. Characterizing rock mass deformation mechanisms during plate load tests at the Bakhtiary dam project[J]. International Journal of Rock Mechanics and Mining Sciences,49 : 1-11. doi: 10.1016/j.ijrmms.2011.10.002
    Ali E, Wu G, Zhao Z M, et al. 2014. Assessments of strength anisotropy and deformation behavior of banded amphibolite rocks[J]. Geotechnical & Geological Engineering, 32 (2): 429-438.
    Bao H, Pei R S, Lan H X, et al. 2021a. Damage evolution of biotite quartz schist caused by mineral directional arrangement under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (10): 2015-2026.
    Bao H, Xu X H, Lan H X, et al. 2021b. Stiffness model of rock joint by considering anisotropic morphology[J]. Journal of Traffic and Transportation Engineering, 2021-11-03, https://kns.cnki.net/kcms/detail/61.1369.U.20211102.1503.002.html.
    Bao H, Ma Y F, Lan H X, et al. 2021c. Anisotropic characteristics of loess with gradation zone based on microstructure quantification: Case study of Q1 loess in Yan'an new district[J]. China Journal of Highway and Transport, 2021-11-15, https://kns.cnki.net/kcms/detail/61.1313.U.20211114.1234.002.html.
    Bao H, Zhang G B, Lan H X, et al. 2020a. Geometrical heterogeneity of the joint roughness coefficient revealed by 3D laser scanning[J]. Engineering Geology, 265: 105415. doi: 10.1016/j.enggeo.2019.105415
    Bao H, Xu X H, Lan H X, et al. 2020b. A new joint morphology parameter considering the effects of micro-slope distribution of joint surface[J]. Engineering Geology, 275: 105734. doi: 10.1016/j.enggeo.2020.105734
    Bao H, Zhai Y, Lan H X, et al. 2019. Distribution characteristics and controlling factors of vertical joint spacing in sand-mud interbedded strata[J]. Journal of Structural Geology, 128: 103886. doi: 10.1016/j.jsg.2019.103886
    Barton N, Choubey V. 1977. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 10 (1): 1-54.
    Barton N, Quadros E. 2015. Anisotropy is everywhere, to see, to measure, and to model[J]. Rock Mechanics and Rock Engineering, 48 (4): 1323-1339. doi: 10.1007/s00603-014-0632-7
    BaŽant Z Ě P. 1997. Scaling of quasibrittle fracture: Hypotheses of invasive and lacunar fractality, their critique and Weibull connection[J]. International Journal of Fracture, 83 (1): 41-65. doi: 10.1023/A:1007335506684
    Bobet A, Einstein H H. 1998. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 35 (7): 863-888. doi: 10.1016/S0148-9062(98)00005-9
    Brown E T. 1980. Underground excavations in rock[M]. London: CRC Press.
    Cai Q L, Zheng Z W, He J. 2015. Age of zircon U-Pb and its geological significance of granite from western Gangdese in Tibet[J]. Journal of East China Institute of Technology(Natural Science), 38 (1): 49-57.
    Chen J P. 2001.3-D net work numerical modeling technique for random discontinuities of rock mass[J]. Chinese Journal of Geotechnical Engineering, 23 (4): 397-402.
    Chen S J, Zhu W C, Liu S X, et al. 2015. Anisotropy and size effects of surface roughness of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (1): 57-66.
    Chen S J, Zhu W C, Wang C Y, et al. 2016. Peak shear strength of 3D rock discontinuities based on anisotropic properties[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (10): 2013-2021.
    Chen W Z, Yang J P, Zou X D, et al. 2008. Research on macromechanical parameters of fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (8): 1569-1575.
    Dewhurst D N, Siggins A F. 2006. Impact of fabric, microcracks and stress field on shale anisotropy[J]. Geophysical Journal International, 165(1): 135-148. doi: 10.1111/j.1365-246X.2006.02834.x
    Du S G. 1997. The practicability of fractal methods on estimating rock joint roughness coefficient[J]. Earth Science-Journal of China University of Geosciences, 22 (6): 665-668.
    Eberhardt E, Stimpson B, Stead D. 1999. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures[J]. Rock Mechanics and Rock Engineering, 32 (2): 81-99. doi: 10.1007/s006030050026
    Fairhurst C. 1971. Fundamental considerations relating to the strength of rock[J]. Veroff. Inst. Bodenmechanik und Felsmechanik(Karlsruhe), 55 : 1-56.
    Feng X T, Seto M. 1999. Fractal structure of the time distribution of microfracturing in rocks[J]. Geophysical Journal International, 136 (1): 275-285. doi: 10.1046/j.1365-246X.1999.0722x.x
    Fjær E, Nes O M. 2014. The impact of heterogeneity on the anisotropic strength of an outcrop shale[J]. Rock Mechanics and Rock Engineering, 47 (5): 1603-1611. doi: 10.1007/s00603-014-0598-5
    Fredrich J, Evans B, Wong T F. 1990. Effect of grain size on brittle and semibrittle strength: Implications for micromechanical modelling of failure in compression[J]. Journal of Geophysical Research: Solid Earth, 95 (B7): 10907-10920. doi: 10.1029/JB095iB07p10907
    Ge Y F, Tang H M, Wang L Q, et al. 2016. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 38 (1): 170-179.
    Grasselli G, Egger P. 2003. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 40 (1): 25-40.
    Gu D Z. 1979. Foundation of engineering geomechanics of rock mass[M]. Beijing: Science Press.
    Guo S F, Qi S W, Huang X L. 2013. Anisotropy of rockmass strength and its transformation critical confining stress[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (S2): 3222-3227.
    Han Z H, Zhang L Q, Zhou J, et al. 2019. Uniaxial compression test and numerical studies of grain size effect on mechanical properties of granite[J]. Journal of Engineering Geology, 27 (3): 497-504.
    Hoek E, Brown E T. 1980. Underground excavation in rock[M]. London: Institute of Mining & Metallurgy.
    Hoek E, Brown E T. 1997. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 34 (8): 1165-1186. doi: 10.1016/S1365-1609(97)80069-X
    Hong C J, Huang M, Xia C C, et al. 2020. Study of size effect on the anisotropic variation coefficient of rock joints[J]. Rock and Soil Mechanics, 41 (6): 2098-2109.
    Jaeger J C. 1960. Shear failure of anistropic rocks[J]. Geological Magazine, 97 (1): 65-72. doi: 10.1017/S0016756800061100
    Ji S, Saruwatari K. 1998. A revised model for the relationship between joint spacing and layer thickness[J]. Journal of Structural Geology, 20 (11): 1495-1508. doi: 10.1016/S0191-8141(98)00042-X
    Jia H B, Tang H M, Liu Y R. 2008. Theory and engineering application of 3 d network simulation of rock discontinuities[M]. Beijing: Science Press.
    Jiang L, Wang Q C, Wang X Z, et al. 2013. Joint development and paleostress field in Mesozoic strata of the southeastern Ordos Basin[J]. Acta Petrologica Sinica, 29 (5): 1774-1790.
    Kulatilake P H S W, Du S G, Ankah M L Y, et al. 2021. Non-stationarity, heterogeneity, scale effects, and anisotropy investigations on natural rock joint roughness using the variogram method[J]. Bulletin of Engineering Geology and the Environment, 1-23.
    Kumar R, Verma A K. 2016. Anisotropic shear behavior of rock joint replicas[J]. International Journal of Rock Mechanics & Mining Sciences, 90 : 62-73.
    Lan H X, Chen J, Macciotta R. 2019. Universal confined tensile strength of intact rock[J]. Scientific Reports, 9 (1): 1-9.
    Lan H X, Martin D, Andersson J. 2013a. Evolution of in situ rock mass damage induced by mechanical-thermal loading[J]. Rock Mechanics and Rock Engineering, 46 (1): 153-168. doi: 10.1007/s00603-012-0248-8
    Lan H X, Martin D, Qi S W, et al. 2013b. A 3D grain based model for characterizing the geometric heterogeneity of brittle rock[C]//47th US Rock Mechanics/Geomechanics Symposium, 3 : 1878-1884.
    Lan H X, Martin D, Hu B. 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research: Solid Earth, 115 (B1): 1-14.
    Lan H X, Peng J B, Zhu Y B, et al. 2022. Researches and prospects of geological and surface processes and major disaster effects in the Yellow River Basin[J]. Scientia Sinica Terrae, 52 (2): 199-221. doi: 10.1360/SSTe-2021-0115
    Lan H X, Peng J, Zhu Y, et al. 2022. Geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 65 (2): 234-256. doi: 10.1007/s11430-021-9830-8
    Lan H X, Wu F Q, Zhou C H, et al. 2003a. Spatial analysis and prediction of rainfall landslide hazard based on GIS[J]. Chinese Science Bulletin, 48 (5): 507-512. doi: 10.1360/csb2003-48-5-507
    Lan H X, Zhou C H, Li Z F, et al. 2003b. Stability response analysis of rainfall landslides under instantaneous pore water pressure: A case study of natural rainfall landslides in Hong Kong[J]. Science in China Ser. E Technological Science, 33 : 119-136.
    Lan H X, Zhang N, Li L P, et al. 2021. Risk analysis of major engineering geological hazards for Sochuan-Tibet Railway in the phase of feasibility study[J]. Journal of Engineering Geology, 29 (2): 326-341.
    Lan H X, Zhang Y X, Wu Y M. 2019. Effect of rock mass structure on the dynamics of long-runout landslide[J]. Journal of Engineering Geology, 27 (1): 108-122.
    Lan H X, Zhou C H, Lee C F, et al. 2003. Rainfall-induced landslide stability analysis in response to transient pore pressure-A case study of natural terrain landslide in Hong Kong[J]. Science China Technological Sciences, 46 (S1): 52-68.
    Li S Z, Sha P, Wu F Q, et al. 2018. Anisotropic characteristics analysis of deformation of layered rock mass[J]. Rock and Soil Mechanics, 39 (S2): 366-373.
    Liang Z Z, Zhang Y B, Tang S B, et al. 2013. Size effect of rock messes and associated representative element properties[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (6): 1157-1166.
    Liu L W, Li H B, Li X F, et al. 2020. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 42 (3): 542-550.
    Lockner D A, Byerlee J D, Kuksenko V, et al. 1992. Observations of quasistatic fault growth from acoustic emissions[M]. International geophysics. Academic Press, 51 : 3-31.
    Luo R, Zeng Y W, Cao Y, et al. 2012. Research on influence of inhomogeneity degree on mechanical parameters of inhomogeneous rock[J]. Rock and Soil Mechanics, 33 (12): 3788-3794.
    Martin C D, Chandler N A. 1994. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31 (6): 643-659.
    Martin C D, Christiansson R. 2009. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 46 (2): 219-228. doi: 10.1016/j.ijrmms.2008.03.001
    Masoumi H, Saydam S, Hagan P C. 2016. Unified size-effect law for intact rock[J]. International Journal of Geomechanics, 16(2): 04015059. doi: 10.1061/(ASCE)GM.1943-5622.0000543
    Na S H, Sun W C, Ingraham M D, et al. 2017. Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests[J]. Journal of Geophysical Research: Solid Earth, 122 (8): 6202-6230. doi: 10.1002/2016JB013374
    Nicksiar M, Martin C D. 2013. Crack initiation stress in low porosity crystalline and sedimentary rocks[J]. Engineering Geology, 154 : 64-76. doi: 10.1016/j.enggeo.2012.12.007
    Pan B T, Xu G L. 1989. Research status and trend of geometrical characteristics of rock joints[J]. Engineering Survey, (5): 23-26.
    Priest S D, Hudson J A. 1976. Discontinuity spacings in rock[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 13 (5): 135-148.
    Priest S D, Hudson J A. 1981. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18 (3): 183-197.
    Qi S, Zheng B, Wu F, et al. 2020. A new dynamic direct shear testing device on rock joints[J]. Rock Mechanics and Rock Engineering, 53 (10): 4787-4798. doi: 10.1007/s00603-020-02175-3
    Singh H K, Basu A. 2018. Evaluation of existing criteria in estimating shear strength of natural rock discontinuities[J]. Engineering Geology, 232 : 171-181. doi: 10.1016/j.enggeo.2017.11.023
    Sun G Z. 1988. Rock mass structural mechanics[M]. Beijing: Science Press.
    Tang C A, Kaiser P K. 1998. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—part Ⅰ: fundamentals[J]. International Journal of Rock Mechanics and Mining Sciences, 35 (2): 113-121. doi: 10.1016/S0148-9062(97)00009-0
    Tang X W, Huang W M, Zhou Y D, et al. 2018. Mesoscale structure reconstruction and anisotropic behavior modeling of layered rock under splitting-tensile loading[J]. Engineering Mechanics, 35 (9): 153-160.
    Villeneuve M C, Diederichs M S, Kaiser P K. 2012. Effects of grain scale heterogeneity on rock strength and the chipping process[J]. International Journal of Geomechanics, 12 (6): 632-647. doi: 10.1061/(ASCE)GM.1943-5622.0000194
    Wang X G, Jia Z X, Chen Z Y, et al. 2016. Determination of discontinuity persistent ratio by Monte-Carlo simulation and dynamic programming[J]. Engineering Geology, 203 : 83-98. doi: 10.1016/j.enggeo.2015.12.001
    Wong R H C, Chau K T, Wang P. 1996. Microcracking and grain size effect in Yuen Long marbles[J]. International Journal of Rock Mechanics and Mining Sciences, 33 (5): 479-485. doi: 10.1016/0148-9062(96)00007-1
    Wu F Q, Deng Y, Wu J, et al. 2020. Stress-strain relationship in elastic stage of fractured rock mass[J]. Engineering Geology, 268: 105498. doi: 10.1016/j.enggeo.2020.105498
    Wu F Q, Wang S J. 2002. Statistical model for structure of jointed rock mass[J]. Géotechnique, 52 (2): 137-140. doi: 10.1680/geot.2002.52.2.137
    Wu F Q, Wu J, Bao H, et al. 2021. Advances in statistical mechanics of rock masses and its engineering applications[J]. Journal of Rock Mechanics and Geotechnical Engineering, 13 (1): 22-45. doi: 10.1016/j.jrmge.2020.11.003
    Wu F Q. 1993. Principles of statistical rock mechanics[M]. Beijing: China University of Geosciences Press.
    Wu H, Pollard D D. 1995. An experimental study of the relationship between joint spacing and layer thickness[J]. Journal of Structural Geology, 17 (6): 887-905. doi: 10.1016/0191-8141(94)00099-L
    Xu X, Bao H, Lan H X, et al. 2022. Sampling interval-size effects and differential sensitivities of different morphology parameters of rock joint[J]. Journal of Structural Geology: 104530.
    Yang Z, Liu R, Wang X Y, et al. 2014. Petrogenesis and tectonic significance of Late Yanshanian Granites in Yunkai Area, Southeast China: Evidence from Zircon U-PD ages and hf isotopes[J]. Earth Science, (9): 1258-1276.
    Zhang W, Han B, Sun H L, et al. 2020. Non-contact collection and 3D fracture network modelling for high-Steep rock slopes[J]. Journal of Engineering Geology, 28 (2): 221-231.
    Zhao X, Elsworth D, He Y, et al. 2021. A grain texture model to investigate effects of grain shape and orientation on macro-mechanical behavior of crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 148: 104971. doi: 10.1016/j.ijrmms.2021.104971
    Zhou C B, Yu S D. 1999. Representative elemetary volume REV—a fundamental problem for selecting the mechanical parameters of jointed rockmass[J]. Journal of Engineering Geology, 7 (4): 332-336.
    Zhou H, Cheng G T, Zhu Y, et al. 2019. Anisotropy of shear characteristics of rock joint based on 3D carving technique[J]. Rock and Soil Mechanics, 40 (1): 118-126.
    Zhu W C, Tang C A. 2004. Micromechanical model for simulating the fracture process of rock[J]. Rock Mechanics and Rock Engineering, 37 (1): 25-56. doi: 10.1007/s00603-003-0014-z
    包含, 裴润生, 兰恒星, 等. 2021a. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律——以黑云母石英片岩为例[J]. 岩石力学与工程学报, 40 (10): 2015-2026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110006.htm
    包含, 胥勋辉, 兰恒星, 等. 2021b. 考虑各向异性形貌特征的结构面刚度计算模型[J]. 交通运输工程学报, 2021-11-03, https://kns.cnki.net/kcms/detail/61.1369.U.20211102.1503.002.html.
    包含, 马扬帆, 兰恒星, 等. 2021c. 基于微结构量化的含渐变带黄土各向异性特征研究-以延安新区Q1黄土为例[J]. 中国公路学报, 2021-11-15, https://kns.cnki.net/kcms/detail/61.1313.U.20211114.1234.002.html.
    蔡青龙, 郑志文, 何俊. 2015. 西藏冈底斯西部地区花岗岩锆石U-Pb年龄及其地质意义[J]. 东华理工大学学报(自然科学版), 38 (1): 49-57. doi: 10.3969/j.issn.1674-3504.2015.01.007
    陈剑平. 2001. 岩体随机不连续面三维网络数值模拟技术[J]. 岩土工程学报, 23 (4): 397-402. doi: 10.3321/j.issn:1000-4548.2001.04.003
    陈世江, 朱万成, 刘树新, 等. 2015. 岩体结构面粗糙度各向异性特征及尺寸效应分析[J]. 岩石力学与工程学报, 34 (1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501007.htm
    陈世江, 朱万成, 王创业, 等. 2016. 考虑各向异性特征的三维岩体结构面峰值剪切强度研究[J]. 岩石力学与工程学报, 35 (10): 2013-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610008.htm
    陈卫忠, 杨建平, 邹喜德, 等. 2008. 裂隙岩体宏观力学参数研究[J]. 岩石力学与工程学报, 27 (8): 1569-1575. doi: 10.3321/j.issn:1000-6915.2008.08.005
    杜时贵. 1997. JRC分形估计方法的实用性[J]. 地球科学: 中国地质大学学报, 22 (6): 665-668.
    葛云峰, 唐辉明, 王亮清, 等. 2016. 天然岩体结构面粗糙度各向异性, 尺寸效应, 间距效应研究[J]. 岩土工程学报, 38 (1): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601021.htm
    谷德振. 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社.
    郭松峰, 祁生文, 黄晓林. 2013. 岩体强度各向异性及其转化的应力条件[J]. 岩石力学与工程学报, 32 (S2): 3222-3227. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2031.htm
    韩振华, 张路青, 周剑, 等. 2019. 矿物粒径对花岗岩单轴压缩特性影响的试验与模拟研究[J]. 工程地质学报, 27 (3): 497-504. doi: 10.13544/j.cnki.jeg.2017-149
    洪陈杰, 黄曼, 夏才初, 等. 2020. 岩体结构面各向异性变异系数的尺寸效应研究[J]. 岩土力学, 41 (6): 2098-2109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006035.htm
    贾洪彪, 唐辉明, 刘佑荣. 2008. 岩体结构面三维网络模拟理论与工程应用[M]. 北京: 科学出版社.
    姜琳, 王清晨, 王香增, 等. 2013. 鄂尔多斯盆地东南部中生界地层节理发育特征与古应力场[J]. 岩石学报, 29 (5): 1774-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305024.htm
    兰恒星, 彭建兵, 祝艳波, 等. 2022. 黄河流域地质地表过程与重大灾害效应研究与展望[J]. 中国科学: 地球科学, 52 (2): 199-221.
    兰恒星, 伍法权, 周成虎, 等. 2003a. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报, 48 (5): 507-512. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200305020.htm
    兰恒星, 周成虎, 李焯芬, 等. 2003b. 瞬时孔隙水压力作用下的瞬时孔隙水压力作用下的降雨滑坡稳定性响应分析: 以香港天然降雨滑坡为例[J]. 中国科学E辑-技术科学, 33(增刊): 119-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK2003S1013.htm
    兰恒星, 张宁, 李郎平, 等. 2021. 川藏铁路可研阶段重大工程地质风险分析[J]. 工程地质学报, 29 (2): 326-341. doi: 10.13544/j.cnki.jeg.2021-0114
    兰恒星, 仉义星, 伍宇明. 2019. 岩体结构效应与长远程滑坡动力学[J]. 工程地质学报, 27 (1): 108-122. doi: 10.13544/j.cnki.jeg.2019-071
    李深圳, 沙鹏, 伍法权, 等. 2018. 层状结构岩体变形的各向异性特征分析[J]. 岩土力学, 39 (S2): 366-373. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2052.htm
    梁正召, 张永彬, 唐世斌, 等. 2013. 岩体尺寸效应及其特征参数计算[J]. 岩石力学与工程学报, 32 (6): 1157-1166. doi: 10.3969/j.issn.1000-6915.2013.06.009
    刘黎旺, 李海波, 李晓锋, 等. 2020. 基于矿物晶体模型非均质岩石单轴压缩力学特性研究[J]. 岩土工程学报, 42 (3): 542-550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003021.htm
    罗荣, 曾亚武, 曹源, 等. 2012. 岩石非均质度对其力学性能的影响研究[J]. 岩土力学, 33 (12): 3788-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212042.htm
    潘别桐, 徐光黎. 1989. 岩体节理几何特征的研究现状及趋向[J]. 工程勘察, (5): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198905008.htm
    孙广忠. 1988. 岩体结构力学[M]. 北京: 科学出版社.
    唐欣薇, 黄文敏, 周元德, 等. 2018. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 35 (9): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809019.htm
    伍法权. 1993. 统计岩体力学原理[M]. 北京: 中国地质大学出版社.
    杨振, 刘锐, 王新宇, 等. 2014. 云开地区燕山晚期花岗岩的岩石成因及构造意义: 锆石U-Pb年龄及Hf同位素证据[J]. 地球科学, 39(9): 1258-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409002.htm
    张文, 韩博, 孙昊林, 等. 2020. 高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究[J]. 工程地质学报, 28 (2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080
    周创兵, 於三大. 1999. 论岩体表征单元体积REV——岩体力学参数取值的一个基本问题[J]. 工程地质学报, 7 (4): 332-336. doi: 10.3969/j.issn.1004-9665.1999.04.008
    周辉, 程广坦, 朱勇, 等. 2019. 基于3D雕刻技术的岩体结构面剪切各向异性研究[J]. 岩土力学, 40 (1): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901009.htm
  • 加载中
图(23)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  53
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 修回日期:  2022-01-17
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回