统计岩体力学(SMRM)——岩体工程地质力学的传承与发展

伍法权 王思敬 潘别桐

伍法权, 王思敬, 潘别桐. 2022. 统计岩体力学(SMRM)——岩体工程地质力学的传承与发展[J]. 工程地质学报, 30(1): 1-20. doi: 10.13544/j.cnki.jeg.2021-0805
引用本文: 伍法权, 王思敬, 潘别桐. 2022. 统计岩体力学(SMRM)——岩体工程地质力学的传承与发展[J]. 工程地质学报, 30(1): 1-20. doi: 10.13544/j.cnki.jeg.2021-0805
WU Faquan, WANG Sijing, PAN Bietong. 2022. Statistical mechanics of rock masses(SMRM)—Inheriting and developing of engineering geomechanics of rock masses[J]. Journal of Engineering Geology, 30(1): 1-20. doi: 10.13544/j.cnki.jeg.2021-0805
Citation: WU Faquan, WANG Sijing, PAN Bietong. 2022. Statistical mechanics of rock masses(SMRM)—Inheriting and developing of engineering geomechanics of rock masses[J]. Journal of Engineering Geology, 30(1): 1-20. doi: 10.13544/j.cnki.jeg.2021-0805

统计岩体力学(SMRM)——岩体工程地质力学的传承与发展

doi: 10.13544/j.cnki.jeg.2021-0805
基金项目: 

国家自然科学基金项目 90302011

国家自然科学基金项目 41030749

国家自然科学基金项目 41831290

浙江省重点研发项目 2020C03092

详细信息
    通讯作者:

    伍法权(1955-),男,博士,教授,博士生导师,主要从事工程地质与岩石力学方面的科研与教学工作. E-mail: wufaquan@usx.edu.cn

  • * 第五届谷德振讲座主讲人报告
  • 中图分类号: TU45

STATISTICAL MECHANICS OF ROCK MASSES(SMRM)—INHERITING AND DEVELOPING OF ENGINEERING GEOMECHANICS OF ROCK MASSES

Funds: 

the National Natural Science Foundation of China 90302011

the National Natural Science Foundation of China 41030749

the National Natural Science Foundation of China 41831290

the Research and Development Project of Zhejiang Province 2020C03092

  • 摘要: 本文是中国地质学会工程地质专业委员会和中国科学院页岩气与地质工程重点实验室第五届谷德振讲座主讲报告。本文简要回顾了谷德振先生岩体工程地质力学的核心价值和历史贡献,系统介绍了30年来统计岩体力学理论和应用技术探索对岩体工程地质力学的传承和发展。统计岩体力学借鉴经典统计物理学的思想方法,提出了岩体结构几何概率模型、断续介质连续等效的断裂力学能量原理、岩体结构-应力协同控制原理、岩体强度的弱环控制原理、断续裂隙网络渗流力学原理;建立了裂隙岩体本构模型、岩体全过程变形分析方法、高储能岩体特性与岩爆机理模型、圆形硐室围岩弹性变形解析解;发展了岩体数据现场采集技术与装备、全空间方向岩体结构参数、力学参数、渗透系数计算方法,以及各向异性岩体质量分级、工程岩体主动加固方法;开发了岩体工程参数计算系统和数值分析工具JointModel。统计岩体力学的建立对岩体工程地质力学和岩体力学理论与技术进步起到了重要的推进作用。
    1)  * 第五届谷德振讲座主讲人报告
  • 图  1  统计岩体力学的体系结构

    Figure  1.  The frame of the Statistical Mechanics of Rock Masses

    图  2  岩体单元和结构面受力图

    Figure  2.  Force diagram of an element and discontinuity

    图  3  节理连通性示意图

    Figure  3.  Schematic diagram of the connectivity of joints

    图  4  岩体全过程变形曲线

    Figure  4.  The complete deformation curves of rock mass

    图  5  单斜层状岩体圆形硐室围岩解析解

    a. 围岩单元体受力;b. 围岩位移;c. 围岩SMRM质量分布

    Figure  5.  The analytical solution of a circular tunnel in inclined layers

    图  6  SMRM岩石力学背包实验室组件

    a. 点荷载仪;b. 直剪仪;c. 三轴仪;d. 结构面摩擦仪;e. 取芯钻机; f. 试件切磨机

    Figure  6.  Parts of the portable SMRM rock mechanical laboratory

    图  7  小尺寸岩石强度的尺寸效应

    a. 粉砂岩;b. 花岗岩(De为试件等效直径,Is(50)为标准尺寸点荷载强度)

    Figure  7.  The size effect of strength of small rock samples

    图  8  基于3D点云的岩体结构智能解译技术

    a. 岩体结构解译软件界面;b. 岩体结构实景;c. 岩体结构与解译块体

    Figure  8.  The 3D point cloud based interpreting techniques for rock mass structure

    图  9  岩体的弹性模量

    a. 弹性模量赤平投影图;b. 弹性模量-围压曲线

    Figure  9.  Elastic modulus of rock mass

    图  10  不同轴压下的岩体泊松比玫瑰曲线

    Figure  10.  Rose diagram of Poisson's ratio of rock mass under different axial loads

    图  11  岩体的抗压强度

    a. 岩体抗压强度赤平投影图;b. 抗压强度-围压曲线

    Figure  11.  Compressive strength of rock mass

    图  12  岩体的抗剪强度-围压曲线

    Figure  12.  Curves of shear strength of rock mass vs confining pressure

    图  13  岩体的渗透系数

    a. 岩体渗透系数赤平投影图;b. 渗透系数-围压曲线;c. 渗透系数体积效应

    Figure  13.  Permeability of rock mass

    图  14  SMRM岩体质量分值分布

    a. 全空间方向赤平投影分布;b. 硐室围岩中的分布;c. 边坡中的分布

    Figure  14.  Distribution of the SMRM quality score of rock mass

    图  15  边坡主动加固计算图示

    a边坡加固需求度(图中取负值)分布;b稳定性系数分布与锚固深度(图 15b中的白色直线)

    Figure  15.  Sketch diagrams for active reinforcement of slope

    图  16  隧道围岩主动加固图示

    a. 隧道围岩压力实测分布(kPa);b. 隧道围岩变形较大部位锚固(图中的白色直线)

    Figure  16.  Sketch diagrams for active reinforcement of tunnel

    图  17  锦屏一级水电站地下厂房围岩参数分布

    a. 破坏概率;b. 岩爆;c. 加固需求度;d. 岩体质量等级

    Figure  17.  Parameter distribution of the rock mass surrounding the underground powerhouse of Jinping Ⅰ hydropower station

    表  1  历届谷德振讲座主题与主讲人

    Table  1.   Topics and speakers of previous Gu Dezhen Lectures

    届别 年份 主题 主讲人
    第一届 2017 工程地质学的内涵与外延共识探讨 王思敬
    第二届 2018 新时期工程地质力学创新引领矿业科技革命 何满潮
    第三届 2019 工程地质的生态学思考 黄润秋
    第四届 2020 松散层大变形研究 彭建兵
    下载: 导出CSV

    表  2  SMRM岩体参数计算系统计算参数表

    Table  2.   Table of parameters can be calculated by SMRM calculation system

    参数名称 计算指标 参数名称 计算指标 参数名称 计算指标
    岩体结构解译 多指标 全方向弹性模量 Em 全方向渗透系数 K
    节理法向密度 λ 模量-围压曲线 Em-σ3 水岩耦合曲线 K-σ
    节理平均半径 a 泊松比玫瑰图 ν 渗透性尺寸效应曲线 K-V
    节理平均隙宽 t 泊松比-围压曲线 ν-σ3 全方向SMRM质量分级 SMRM
    节理体积密度 λv 全方向抗压强度 σ1m SMRM质量云图 SMRM
    岩石质量指标 RQD 强度-围压曲线 σ1m-σ3 岩爆指标云图 Rc
    节理连通率 η 抗剪强度曲线 t-σ 加固需求度云图 Δσ3
    节理最大半径 am 抗剪强度玫瑰图 t 卸荷带曲线 T-d
    节理最大隙宽 tm 各类参数的弱化系数与各向异性指数 ζξ
    下载: 导出CSV
  • Cao J H,Cheng K. 1986. Introduction to reliability mathematics[M]. Beijing: Science Press.
    Fan T Y. 1978. Fundamental of fracture mechanics[M]. Nanjing: Jiangsu Science & Technology Press.
    Gu D Z. 1979. Fundamental of engineering geo-mechanics of rock masses[M]. Beijing: Science Press.
    Guo S F, Qi S W, Saroglou C. 2020. A-BQ, a classification system for anisotropic rock mass based on China National Standard[J]. Journal of Central South University, 27: 3090-3102. doi: 10.1007/s11771-020-4531-7
    Hua J X, Zhen J G. 2018. Handbook of engineering geology[M]. 5th ed. Beijing: China Construction Industry Press.
    Hudson J A, Priest S D. 1983. Discontinuity frequency in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 20 (2): 73-89. doi: 10.1016/0148-9062(83)90329-7
    Jaeger J C, Cook N G W. 1979. Fundamentals of rock mechanics[M]. 3rd ed. London: Chapman and Hall.
    Kawamoto T, Ichikawa Y, Kyoya T. 1988. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 12 (1): 1-30. doi: 10.1002/nag.1610120102
    Kong D H, Wu F Q, Saroglou C. 2020. Automatic identification and characterization of discontinuities in rock masses from 3D point clouds[J]. Engineering Geology, 265: 105442. doi: 10.1016/j.enggeo.2019.105442
    Kulatilake P H S W, Wu T H. 1984. The density of discontinuity traces in sampling windows[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 21 (6): 345-347. doi: 10.1016/0148-9062(84)90367-X
    Li L H, Huang B X, Li Y Y, et al. 2019. Multi-scale 3-D modeling of Yanchang shale geological structure considering laminas and fracture networks[J]. Journal of Engineering Geology, 27 (1): 69-79.
    Lin J, Sha P, Wu F Q, et al. 2018. Correlation between point loading index and uniaxial compressive strength of rock-like material based on size effect[J]. Journal of Yangtze River Scientific Research Institute, 35 (3): 34-44.
    Louis C. 1974. Rock hydraulics in rock mechanics[M]. New York: Verlay Wien.
    Maazallahi V, Majdi A. 2021. Directional rock mass rating(DRMR)for anisotropic rock mass characterization[J]. Bulletin of Engineering Geology and the Environment, 80 (6): 4471-4499. doi: 10.1007/s10064-021-02143-3
    Oda M. 1983. A method for evaluating the effect of crack geometry on the mechanical behavior of cracked rock masses[J]. Mechanics of Materials, 2 (2): 163-171. doi: 10.1016/0167-6636(83)90035-2
    Oda M. 1986. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research, 22 (13): 1845-56. doi: 10.1029/WR022i013p01845
    Pan B T, Xu G L. 1989. Advances and trends of rock joint geometry research[J]. Geotechnical Investigation & Surveying, (5): 23-26.
    Priest S D, Samaniego I A. 1983. A model for the analysis of discontinuity characteristics in two dimensions//Proceedings of the 5th International Society for Rock Mechanics(ISRM)Congress: 199-207.
    Sha P, Zhang Q T, Lin J, et al. 2020. In-situ estimation of uniaxial compressive strength of igneous rock based on point load strength[J/OL]. Rock and Soil Mechanics, 2020-08-04, https://kns.cnki.net/kcms/detail/42.1199.O3.20200804.1424.002.html.
    Sha P, Zhao Y W, Gao S Y, et al. 2020. Improvement of BQ classification for layered rock mass quality index in tunnel engineering[J]. Journal of Engineering Geology, 28 (5): 942-950.
    Sun G Z. 2016. Mechanics of rock mass[M]. Beijing: Science Press.
    Sun G Z. 1988. Structural mechanics of rock mass[M]. Beijing: Science Press.
    Sun G Z. 1993. On the theory of structure-controlled rockmass[J]. Journal of Engineering Geology, 1(1): 14-18.
    Wang L F. 1979. Elasticity theory[M]. Beijing: Science Press.
    Wang M, Li L H, Liao X H, et al. 2019. Rapid topographic measurement and three-dimensional numerical modeling method for high-steep/upright slopes based on aerial photography of UAV[J]. Journal of Engineering Geology, 27 (5): 1000-1009. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201905008.htm
    Wang S J, Huang D C. 2004. The century achievements of engineering geology in China[M]. Beijing: Geological Publishing House.
    Wang S J. 2004. The century achievements of rock mechanics and engineering in China[M]. Nanjing: Hohai University Press.
    Wang Z Y, et al. 2022. Research on point load strength tests of red sandstone based on size effect[J]. Mining Research and Exploitation. 3 : 22-28.
    Wang Z X. 1956. Introduction of statistic physics[M]. Beijing: People's Education Press.
    Weibull W. 1939. A statistical theory of the strength of materials[J]. Stockholm: Centraltryckeriet Esselte ab.
    Wu F Q, Qiao L, Guan S G, et al. 2021a. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (5): 865-873.
    Wu F Q, Shan Z G, Wang J Y, et al. 2021b. Technical specification for parameter calculation and classification of engineering rock mass[S]. Beijing: China Standard Press.
    Wu F Q. 1993. Principles of statistical mechanics of rock masses[M]. Wuhan: China University of Geosciences Press.
    Wu F Q. 2011. Principles of engineering geological dynamics of rockmass[J]. Journal of Engineering Geology, 19 (3): 304-317.
    Wu F Q, Wang S J. 1995. Principles of statistical rock mass[C]//Rock Mechanics in China. Beijing: Science Press: 97-116.
    Wu F Q, Wu J, Bao H, et al. 2021. Advances in statistical mechanics of rock masses and its engineering applications[J]. Journal of Rock Mechanics and Geotechnical Engineering, 13 (1): 22-45. doi: 10.1016/j.jrmge.2020.11.003
    Wu F Q, Wu J, Qi S W. 2010. Phenomena and theoretical analysis for the failure of brittle rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2 (4): 331-337.
    Wu F Q. 1992. Constitutive model and strength theory of jointed rock masses[J]. Chinese Science Bulletin, 37 (2): 131-135.
    Yamaguchi Umetaro, Nishimatsu Yuichi. 1982. Fundamental of rock mechanics[M]. Huang translate. Beijing: Metallurgical Industry Press.
    Zhang J J, Fu B J. 2008. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (10): 2034-2042.
    Zhang K, Wu F Q, Sha P, et al. 2019. Geological cataloging method with oblique photography of UAV for open-pit slope and its application[J]. Journal of Engineering Geology, 27 (6): 1448-1455.
    Zhang W, Han B, Sun H L, et al. 2020. Non-contact collection and 3D fracture network modelling for high-steep rock slopes[J]. Journal of Engineering Geology, 28 (2): 221-231.
    Zhang Y, Ning L B, Yin F, et al. 2020. New method of field measurement and calculation for volumetric fracture rate of rock mass[J]. Journal of Engineering Geology, 28 (1): 10-18.
    Zheng J, Yang X J, Lü Q, et al. 2018. A new perspective for the directivity of Rock Quality Designation(RQD) and an anisotropy index of jointing degree for rock masses[J]. Engineering Geology, 240 : 81-94. doi: 10.1016/j.enggeo.2018.04.013
    Zhou WY. 1990. Advanced rock mechanics[M]. Beijing: China Water & Power Press.
    曹晋华, 程侃. 1986. 可靠性数学引论[M]. 北京: 科学出版社.
    范天佑. 1978. 断裂力学基础[M]. 南京: 江苏科学技术出版社.
    谷德振. 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社.
    化建新, 郑建国. 2018. 工程地质手册[M]. 5版. 北京: 中国建筑工业出版社.
    李丽慧, 黄北秀, 李严严, 等. 2019. 考虑页岩纹层与裂缝网络的延长组页岩多尺度三维地质结构模型[J]. 工程地质学报, 27 (1): 69-79. doi: 10.13544/j.cnki.jeg.2019-061
    林军, 沙鹏, 伍法权, 等. 2018. 基于尺寸效应的类岩石材料点荷载指标与单轴抗压强度对应关系研究[J]. 长江科学院院报, 35 (3): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201803009.htm
    刘彤. 2009. 小湾电站坝基开挖岩体卸荷特性及工程对策研究[D]. 北京: 中国科学院地质与地球物理研究所.
    潘别桐, 徐光黎. 1989. 岩体节理几何特征的研究现状及趋向[J]. 工程勘察, (5): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198905008.htm
    沙鹏, 张庆同, 林军, 等. 2020a. 基于点荷载强度的火成岩单轴抗压强度原位估算[J/OL]. 岩土力学, 2020-08-04, https://kns.cnki.net/kcms/detail/42.1199.03.20200804.1424.002.html.
    沙鹏, 赵逸文, 高书宇, 等. 2020b. 隧道层状岩体质量评价的BQ分级改进[J]. 工程地质学报, 28 (5): 942-950. doi: 10.13544/j.cnki.jeg.2020-156
    山口梅太郎, 西松裕一. 1982. 岩石力学基础[M]. 黄世衡, 译. 北京: 冶金工业出版社.
    孙广忠, 孙毅. 2016. 岩体力学原理[M]. 北京: 科学出版社.
    孙广忠. 1988. 岩体结构力学[M]. 北京: 科学出版社.
    孙广忠. 1993. 论"岩体结构控制论"[J]. 工程地质学报, 1(1): 14-18. http://www.gcdz.org/article/id/9907
    王龙甫. 1979. 弹性理论[M]. 北京: 科学出版社.
    王明, 李丽慧, 廖小辉, 等. 2019. 基于无人机航摄的高陡/直立边坡快速地形测量及三维数值建模方法[J]. 工程地质学报, 27 (5): 1000-1009. doi: 10.13544/j.cnki.jeg.2019052
    王思敬, 黄鼎成. 2004. 中国工程地质世纪成就[M]. 北京: 地质出版社.
    王思敬. 2004. 中国岩石力学与工程世纪成就[M]. 南京: 河海大学出版社: 101-122.
    王兆远, 等, 2022. 基于尺寸效应的红砂岩点荷载强度试验研究[J]. 矿业研究与开发, 3 : 22-28.
    王竹溪. 1956. 统计物理学导论[M]. 北京: 人民教育出版社.
    伍法权, 乔磊, 管圣功, 等. 2021a. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报, 40 (5): 865-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105001.htm
    伍法权, 单治钢, 王敬勇, 等. 2021b. 工程岩体参数计算与岩体质量分级技术规程[S]. 北京: 中国标准出版社.
    伍法权. 1993. 统计岩体力学原理[M]. 武汉: 中国地质大学出版社.
    伍法权. 2011. 岩体工程地质动力学基本原理[J]. 工程地质学报, 19(3): 304-317. doi: 10.3969/j.issn.1004-9665.2011.03.003
    张镜鉴, 傅冰俊. 2008. 岩爆及其判据与防治[J]. 岩石力学与工程学报, 27 (10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010
    张恺, 伍法权, 沙鹏, 等. 2019. 基于无人机倾斜摄影的矿山边坡岩体结构编录方法与工程应用[J]. 工程地质学报, 27 (6): 1448-1455. doi: 10.13544/j.cnki.jeg.2019-105
    张文, 韩博, 孙昊林, 等. 2020. 高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究[J]. 工程地质学报, 28 (2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080
    张杨, 宁立波, 尹峰, 等. 2020. 岩体体裂隙率野外测量及计算方法的研究[J]. 工程地质学报, 28 (1): 10-18. doi: 10.13544/j.cnki.jeg.2018-387
    中华人民共和国住房和城乡建设部. 2019.2018年全国工程勘察设计统计公报[EB/OL]. (2019-06-20)[2022-01-19]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/tjgb/201906/20190621_240943.html
    周维垣. 1990. 高等岩石力学[M]. 北京: 水利电力出版社.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  537
  • HTML全文浏览量:  103
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-01-19
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回