海底滑坡链式灾害研究进展

年廷凯 沈月强 郑德凤 雷得浴

年廷凯, 沈月强, 郑德凤, 等. 2021. 海底滑坡链式灾害研究进展[J].工程地质学报, 29(6): 1657-1675. doi: 10.13544/j.cnki.jeg.2021-0815
引用本文: 年廷凯, 沈月强, 郑德凤, 等. 2021. 海底滑坡链式灾害研究进展[J].工程地质学报, 29(6): 1657-1675. doi: 10.13544/j.cnki.jeg.2021-0815
Nian Tingkai, Shen Yueqiang, Zheng Defeng, et al. 2021. Research advances on the chain disasters of submarine landslides[J].Journal of Engineering Geology, 29(6): 1657-1675. doi: 10.13544/j.cnki.jeg.2021-0815
Citation: Nian Tingkai, Shen Yueqiang, Zheng Defeng, et al. 2021. Research advances on the chain disasters of submarine landslides[J].Journal of Engineering Geology, 29(6): 1657-1675. doi: 10.13544/j.cnki.jeg.2021-0815

海底滑坡链式灾害研究进展

doi: 10.13544/j.cnki.jeg.2021-0815
基金项目: 

国家自然科学基金项目 42077272

国家自然科学基金项目 51879036

国家自然科学基金项目 52079020

辽宁省兴辽英才计划项目 XLYC2002036

详细信息
    通讯作者:

    年廷凯(1971-),男,博士,教授,博士生导师,主要从事海洋岩土工程灾害、山区地质灾害等领域的科研和教学工作. E-mail: tknian@dlut.edu.cn

  • 中图分类号: P756.2

RESEARCH ADVANCES ON THE CHAIN DISASTERS OF SUBMARINE LANDSLIDES

Funds: 

the National Natural Science Foundation of China 42077272

the National Natural Science Foundation of China 51879036

the National Natural Science Foundation of China 52079020

Liaoning Revitalization Talents Program XLYC2002036

  • 摘要: 我国海洋能源开发已步入深远海域,面临的深海地质灾害问题也日益凸显,尤以海底滑坡最为典型,一旦发生将会形成链式灾害,严重危害水下基础设施的安全。本文聚焦“滑坡形成→运动演化→冲击设施”这一链式灾害过程,首先梳理了不同触发因素作用下海底滑坡的形成机制,进而论述了海底滑坡的运动过程及不同演化阶段的判识标准,分析了滑坡运动演化过程中环境水与土体的耦合作用机理,提出了适用于中小尺度运动演化过程的流固耦合分析方法,并探讨了当前海底滑坡运动演化过程试验模拟技术和原位监测手段的适用范畴与技术瓶颈;进一步地,针对滑坡冲击海底管缆等水下基础设施问题,评析了海底滑坡冲击效应的量化评估方法和研究手段。最后,指出当前海底滑坡链式灾害研究存在的不足和未来的发展方向,以期为海底滑坡地质灾害链的模拟、预测和预警等提供重要参考。
  • 图  1  海底滑坡链式灾害示意图(改自Vanneste et al., 2014)

    Figure  1.  Schematic diagram of submarine landslide chain hazard (modified from Vanneste et al., 2014)

    图  2  研究技术手段

    Figure  2.  Research technology tools

    图  3  海底滑坡运动演化过程示意图

    Figure  3.  Schematic diagram of the evolution of submarine landslide movement

    图  4  海底黏性滑坡体运动演化过程(俯视图)

    a. 滑坡体运动形态演变;b. 滑坡体运动速度演进

    Figure  4.  The evolution process of submarine cohesive landslide movement

    表  1  海底滑坡运动演化阶段分类与命名

    Table  1.   Classification and naming of evolutionary stages of submarine landslide movement

    文献来源 分类依据 命名阶段
    Dott(1963) 海底地形勘探资料 塌陷 滑动 块状流 浊流
    Moore(1978) 陆地滑坡方案、海底滑坡体物质状态 塌陷 滑动 流动
    Nardin et al. (1979) 沉积物力学特性 岩崩 滑动 块体流 黏性流
    寇养琦(1990) 中国南海北部海底滑坡空间分布形态 块状滑坡 层状滑坡 混合滑坡
    Mulder et al. (1996) 滑坡运动形式、结构特征、破坏面形状 滑动/滑塌 塑性流 浊流
    贾永刚等(2000) 滑坡发生地、物质组分、特征及运动方式 坍塌 滑坡 流动
    Locat et al.(2002) 海底滑坡运动机理 坠落 滑动 扩张 流动 倾倒
    Weimer et al. (2007) 块体搬运复合体系(简称MTcs) 滑动 滑塌 碎屑流 浊流
    Boylan et al. (2009) 滑坡体物理力学指标和运动学特征 斜坡失稳 完整土体 碎屑流 浊流 重水流
    Boukpeti et al. (2012) 滑坡体土性参数和运动学特征 斜坡失稳 完整土体 碎屑流 浊流 重水流
    张丙坤等(2014) 天然气水合物成藏与海底滑坡时序关系 前水合物滑坡 同水合物滑坡 后水合物滑坡
    Shanmugam et al. (2015) 块体搬运体系(简称MTD) 岩屑崩落 滑动 滑塌 碎屑流 倾倒 蠕变
    Dong(2016) 海底滑坡土性和运动学特征 斜坡破坏 滑动 碎屑流 浊流 重水流
    范宁(2019)
    郭兴森(2021)
    海底滑坡土性和运动学特征 斜坡失稳 块体滑移 碎屑流 浊流 重水流
    下载: 导出CSV

    表  2  碎屑流(泥流)—浊流阶段土水相互作用模式(Felix et al., 2006)

    Table  2.   Debris flow(mud flow)-turbidity flow phase soil-water interaction model(Felix et al., 2006)

  • Acosta E A,Tibana S,de Almeida M D S S,et al. 2017. Centrifuge modeling of hydroplaning in submarine slopes[J]. Ocean Engineering,129 : 451-458. doi: 10.1016/j.oceaneng.2016.10.047
    Bea R G. 1971. How sea floor slides affect offshore structures[J]. Oil and Gas Journal, 69 (48): 88-92.
    Boukpeti N, White D J, Randolph M F, et al. 2012. Strength of fine-grained soils at the solid-fluid transition[J]. Géotechnique, 62 (3): 213-226. doi: 10.1680/geot.9.P.069
    Bouriak S, Vanneste M, Saoutkine A. 2000. Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway[J]. Marine Geology, 163(1-4): 125-148. doi: 10.1016/S0025-3227(99)00115-2
    Boylan N, Gaudin C, White D J, et al. 2009. Geotechnical centrifuge modelling techniques for submarine slides[C]//Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2009, 7: 65-72.
    Cao Y C, Yang T, Wang Y Z, et al. 2017. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current[J]. Earth Science Frontiers, 24 (3): 234-248.
    Chang F Q. 2009. Study on mechanism of wave-induced submarine landslide at the Yellow River Estuary, China[D]. Qingdao: Ocean University of China.
    Chatzidakis D, Tsompanakis Y, Psarropoulos P N. 2019. An improved analytical approach for simulating the lateral kinematic distress of deepwater offshore pipelines[J]. Applied Ocean Research, 90: 101852. doi: 10.1016/j.apor.2019.101852
    Chen W Y, Liu C L, Li Y, et al. 2020. An integrated numerical model for the stability of artificial submarine slope under wave load[J]. Coastal Engineering, 158: 103698. doi: 10.1016/j.coastaleng.2020.103698
    Chu H X, Fang Z H, Shi H J, et al. 2016. Analysis and evaluation on the slope stability of Caofeidian deep trough[J]. The Ocean Engineering, 34 (3): 114-122. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201603013.htm
    Coleman J M, Prior D B, Garrison L E, et al. 1993. Slope failures in an area of high sedimentation rate: Offshore Mississippi River delta[M]//Submarine Landslides: Selected Studies in the US Exclusive Economic Zone: 79-91.
    Coulter S E, Phillips R. 2003. Simulating submarine slope instability initiation using centrifuge model testing[M]//Submarine Mass Movements and Their Consequences. Springer: 29-36.
    Dai C, Xia F, Zhang Y Z. 2015. Shallow seismic stratigraphic records of earthquakes in the radial sand ridge field of South Yellow Sea[J]. Marine Geology & Quaternary Geology, 35 (5): 77-85. http://www.researchgate.net/profile/Fei_Xia_xiafei/publication/282842488_Shallow_seismic_stratigraphic_records_of_earthquakes_in_the_Radial_Sand_Ridge_Field_of_South_Yellow_Sea/links/56206fa208ae70315b552c22.pdf
    Deng J L, Zhang X X, Huang F R. 2019. Study on transport mechanism of blocks by subaqueous debris flow in rotating flume test[J]. Journal of Engineering Geology, 27 (S1): 251-256.
    Deng J L, Zhang X X, Shen S L, et al. 2018. Low friction coefficient(approximately tan1°) of subaqueous debris flow in rotating flume tests and its mechanism[J]. Bulletin of Engineering Geology and the Environment, 77 (3): 931-939. doi: 10.1007/s10064-017-1081-9
    Deng J L, Zhang X X. 2020. Study on water pressure at bottom of subaqueous debris flow in rotating flume test[J]. Journal of Engineering Geology, 28 (5): 1000-1006.
    Dong Y K, Wang D, Randolph M F. 2017a. Runout of submarine landslide simulated with material point method[J]. Procedia Engineering, 175 : 357-364. doi: 10.1016/j.proeng.2017.01.045
    Dong Y K, Wang D, Randolph M F. 2017b. Investigation of impact forces on pipeline by submarine landslide using material point method[J]. Ocean Engineering, 146 : 21-28. doi: 10.1016/j.oceaneng.2017.09.008
    Dong Y K, Wang D, Randolph M F. 2020. Quantification of impact forces on fixed mudmats from submarine landslides using the material point method[J]. Applied Ocean Research, 102: 102227. doi: 10.1016/j.apor.2020.102227
    Dong Y K. 2016. Runout of submarine landslides and their impact on subsea infrastructure using material point method[D]. Perth, Australia: University of Western Australia.
    Dott R H. 1963. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 47 (1): 104-128. http://www.researchgate.net/publication/273336849_Dynamics_of_Subaqueous_Gravity_Depositional_Processes
    El Shamy U, Zeghal M. 2005. Coupled continuum-discrete model for saturated granular soils[J]. Journal of Engineering Mechanics, 131 (4): 413-426. doi: 10.1061/(ASCE)0733-9399(2005)131:4(413)
    Fan N. 2019. Study on strength properties of submarine slides and their impact on pipelines[D]. Dalian: Dalian University of Technology.
    Fan N, Nian T K, Jiao H B, et al. 2019. Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides[J]. Rock and Soil Mechanics, 40 (1): 413-420. http://www.researchgate.net/publication/332628117_Effect_and_mechanism_of_disaster_reduction_of_pipelines_with_double-elliptic_streamline_contour_against_impact_of_submarine_landslides
    Fan N, Nian T K, Jiao H B, et al. 2020. Evaluation of the mass transfer flux at interfaces between submarine sliding soils and ambient water[J]. Ocean Engineering, 216: 108069. doi: 10.1016/j.oceaneng.2020.108069
    Fan N, Sahdi F, Zhang W C, et al. 2021. Effect of pipeline-seabed gaps on the vertical forces of a pipeline induced by submarine slide impact[J]. Ocean Engineering, 221: 108506. doi: 10.1016/j.oceaneng.2020.108506
    Felix M, Peakall J. 2006. Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments[J]. Sedimentology, 53 (1): 107-123. doi: 10.1111/j.1365-3091.2005.00757.x
    Feng B, Sun H L, Cai Y Q, et al. 2019. Experimental study of submarine landslide impact on offshore wind power piles[J]. The Ocean Engineering, 37 (6): 114-121. http://en.cnki.com.cn/Article_en/CJFDTotal-HYGC201906012.htm
    Fu C W, Nian T K, Guo X S, et al. 2021. Investigation on responses and capacity of offshore pipelines subjected to submarine landslides[J]. Applied Ocean Research, 117: 102904. doi: 10.1016/j.apor.2021.102904
    Gauer P, Kvalstad T J, Forsberg C F, et al. 2005. The last phase of the Storegga Slide: Simulation of retrogressive slide dynamics and comparison with slide-scar morphology[J]. Marine and Petroleum Geology, 22(1-2): 171-178. doi: 10.1016/j.marpetgeo.2004.10.004
    Gu X Y. 2000. Review and prospects of marine engineering geology[J]. Journal of Engineering Geology, 8 (1): 40-45. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200001008.htm
    Gu Z D, Guo X S, Zhao W, et al. 2021. Multi-probe in-situ testing system and evaluation method for undrained shear strength of deep-sea shallow sediments[J].Journal of Engineering Geology, 29(6): 1949-1955.
    Gue C S, Soga K, Bolton M D, et al. 2010. Centrifuge modelling of submarine landslide flows[C]//7th International Conference on Physical Modelling in Geotechnics. Zurich, Switzerland: [s. n. ]: 28.
    Guo X S. 2021. Study on the susceptibility of submarine Seismic landslide and landslide-pipeline interaction[D]. Dalian: Dalian University of Technology.
    Guo X S, Nian T K, Gu Z D, et al. 2021. Evaluation methodology of laminar-turbulent flow state for fluidized material with special reference to submarine landslide[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(1): 4020048. doi: 10.1061/(ASCE)WW.1943-5460.0000616
    Guo X S, Nian T K, Wang F W, et al. 2019. Landslides impact reduction effect by using honeycomb-hole submarine pipeline[J]. Ocean Engineering, 187: 106155. doi: 10.1016/j.oceaneng.2019.106155
    Hampton M A, Lee H J, Locat J. 1996. Submarine landslides[J]. Reviews of Geophysics, 34 (1): 33-59. doi: 10.1029/95RG03287
    Hance J J. 2003. Development of a database and assessment of seafloor slope stability based on published literature[D]. Austin: University of Texas at Austin.
    Haza Z F, Harahap I S H, Dakssa L M. 2013. Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base[J]. Natural Hazards, 68 (2): 587-611. doi: 10.1007/s11069-013-0643-9
    Heezen B C, Ewing W M. 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks[Newfoundland]earthquake[J]. American Journal of Science, 250 (12): 849-873. doi: 10.2475/ajs.250.12.849
    Hsu S, Kuo J, Chung-Liang L, et al. 2008. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J]. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19 (6): 767-772. doi: 10.3319/TAO.2008.19.6.767(PT)
    Huo Y D, Nian T K, Jiao H B, et al. 2019. Seismic stability of submarine clay slopes based on upper bound approach[J]. Journal of Engineering Geology, 27 (2): 408-414. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201902022.htm
    Ilstad T, Elverhøi A, Issler D, et al. 2004a. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: A laboratory study using particle tracking[J]. Marine Geology, 213(1-4): 415-438. doi: 10.1016/j.margeo.2004.10.017
    Ilstad T, Marr J G, Elverhøi A, et al. 2004b. Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress[J]. Marine Geology, 213 (1): 403-414. http://folk.uio.no/anelverh/Papers/Ilstad_et_al_Laboratory_Studies_of_Subaqueous_Debris_pressure.pdf
    Imran J, Harff P, Parker G. 2001. A numerical model of submarine debris flow with graphical user interface[J]. Computers & Geosciences, 27 (6): 717-729. http://www.onacademic.com/detail/journal_1000035106130010_96df.html
    Ji C S, Jia Y G, Zhu J J, et al. 2021. Development and application of in-situ observation system for bottom boundary layer in abyssal sea[J/OL]. Earth Science Frontiers, 2021-10-09, https://doi.org/10.13745/j.esf.sf.2021.9.28.
    Jia Y G, Shan H X. 2000. Investigation and study of slope unstability of subaqueous delta of morden Yellow River[J]. The Chinese Journal of Geological Hazard and Control, 11 (1): 1-5. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDH200001000.htm
    Jia Y G, Wang Z H, Liu X L, et al. 2017. The research progress of field investigation and in-situ observation methods for submarine landslide[J]. Periodical of Ocean University of China, 47 (10): 61-72. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201710010.htm
    Jiang M J, Shen Z F, Wu D. 2018. CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone[J]. Landslides, 15 (11): 2227-2241. doi: 10.1007/s10346-018-1035-8
    Jiang M J, Sun C, Crosta G B, et al. 2015. A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEM approach[J]. Engineering Geology, 190 : 1-16. doi: 10.1016/j.enggeo.2015.02.007
    Jing L, Guo S Y, Zhao T. 2019. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 40 (1): 388-394. http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX201901041.htm
    Kou Y Q. 1990. Submarine landslides in the northern South China Sea[J]. Ocean Development and Management, 7 (3): 48-51.
    Lee C, Huang Z H, Yu M. 2018. Collapse of submerged granular columns in loose packing: Experiment and two-phase flow simulation[J]. Physics of Fluids, 30(12): 123307. doi: 10.1063/1.5050994
    Lee H J, Schwab W C, Booth J S. 1993. Submarine landslides: An introduction[J]. Submarine landslides: Selected Studies in the US Exclusive Economic Zone: 1-13. http://www.researchgate.net/publication/284043326_Submarine_landslides_An_introduction_W_Submarine_landslides_Selected_studies_in_the_US_Exclusive_Economic_Zone
    Li D L, Yan E C, Feng B, et al. 2019. Impact of submarine debris flow on offshore piles[J]. Journal of Zhejiang University(Engineering Science), 53 (12): 2342-2347. http://en.cnki.com.cn/Article_en/CJFDTotal-ZDZC201912011.htm
    Li J G, Xiu Z X, Shen H, et al. 2012. A review of the studies on submarine mass movement[J]. Coastal Engineering, 31 (4): 67-78. http://www.cqvip.com/QK/95947X/201204/662458365.html
    Li R, Chen J, Liao C. 2021. Numerical study on interaction between submarine landslides and a monopile using CFD techniques[J]. Journal of Marine Science and Engineering, 9(7): 736. doi: 10.3390/jmse9070736
    Li W. 2013. Seismic characteristics and trigger mechanisms of submarine landslides in northern South China Sea[D]. Beijing: Graduate University of Chinese Academy of Sciences.
    Liu B H, Li X S, Zhao Y X, et al. 2005. Debris transport on the western continental slope of the okinawa trough: slumping and gravity flowing[J]. Oceanologia et Limnologia Sinica, 36 (1): 1-9. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ200501000.htm
    Liu D Z, Cui Y F, Guo J, et al. 2020. Investigating the effects of clay/sand content on depositional mechanisms of submarine debris flows through physical and numerical modeling[J]. Landslides, 17 (8): 1863-1880. doi: 10.1007/s10346-020-01387-6
    Liu J, Tian J L, Yi P. 2015. Impact forces of submarine landslides on offshore pipelines[J]. Ocean Engineering, 95 : 116-127. doi: 10.1016/j.oceaneng.2014.12.003
    Liu M, Liu B, Nian T K., et al. 2015. Numerical analysis of the failure mechanism of submarine slopes under linear wave loading[J]. China Earthquake Engineering Journal, 37 (2): 415-421. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201502022.htm
    Liu T, Cui F, Zhang M X. 2015. Research progress of deep seabed pore pressure observation techniques in situ[J]. Journal of Hydraulic Engineering, 46 (S1): 111-116. http://www.researchgate.net/publication/283026332_Research_progress_of_deep_seabed_pore_pressure_observation_techniques_in_situ
    Liu T, Zhang M X, Cui F, et al. 2018. Applicability of equipment based on FBG sensors for excess pore pressure monitoring in deep seabed[J]. Chinese Journal of Underground Space and Engineering, 14 (2): 514-522. http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE201802030.htm
    Locat J, Lee H J. 2002. Submarine landslides: advances and challenges[J]. Canadian Geotechnical Journal, 39 (1): 193-212. doi: 10.1139/t01-089
    Ma L W, Wu S G. 2019. Subsection simulation of submarine landslide process[C]//National Security Geophysical Series(Ⅹ Ⅴ)-Silk Road Environment and Geophysics: 65-69.
    Ma Y. 2014. Study of submarine landslides and trigger mechanism along the continental slope of the northern South China Sea[D]. Qingdao: Ocean University of China.
    Mi Y, Wang J H, Cheng X L, et al. 2021. Numerical modelling for dynamic instability process of submarine soft clay slopes under seismic loading[J]. Journal of Ocean University of China, 20 (5): 1109-1120. doi: 10.1007/s11802-021-4701-8
    Milne J. 1897. Sub-oceanic changes[J]. The Geographical Journal, 10 (2): 129-146. doi: 10.2307/1774597
    Mohrig D, Ellis C, Parker G, et al. 1998. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin, 110 (3): 387-394. doi: 10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2
    Mohrig D, Marr J G. 2003. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology, 20(6-8): 883-899. doi: 10.1016/j.marpetgeo.2003.03.002
    Moore D G. 1978. Submarine slides[M]//Developments in Geotechnical Engineering. Elsevier, 14 : 563-604.
    Moore J G. 1992. A syn-rift to post-rift transition sequence in the Main Porcupine Basin, offshore western Ireland[J]. Geological Society, London, Special Publications, 62 (1): 333-349. doi: 10.1144/GSL.SP.1992.062.01.26
    Moridis G J, Collett T S, Pooladi-Darvish M, et al. 2011. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits[J]. SPE Reservoir Evaluation & Engineering, 14 (1): 76-112.
    Mulder T, Cochonat P. 1996. Classification of offshore mass movements[J]. Journal of Sedimentary Research, 66 (1): 43-57.
    Nardin T R, Hein F J, Gorsline D S, et al. 1979. A review of mass movement processes, sediment and acoustic characteristics and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems[M]//Doyle L J, Pilkey O H. Geology of the Continental Slopes. Tulsa: SEPM: 61-73.
    Ni Y G, Xia Z, Ma S Z. 2013. The submarine landslides and climate change events related to gas hydrate dissociation[J]. Geological Research of South China Sea, (1): 73-81. http://en.cnki.com.cn/Article_en/CJFDTotal-NHDZ201300010.htm
    Nian T K, Guo X S, Fan N, et al. 2018. Impact forces of submarine landslides on suspended pipelines considering the low-temperature environment[J]. Applied Ocean Research, 81 : 116-125. doi: 10.1016/j.apor.2018.09.016
    Nian T K, Guo X S, Zheng D F, et al. 2019. Susceptibility assessment of regional submarine landslides triggered by seismic actions[J]. Applied Ocean Research, 93: 101964. doi: 10.1016/j.apor.2019.101964
    Nian T K, Li D Y, Liang Q H, et al. 2021. Multi-phase flow simulation of landslide dam formation process based on extended coupled DEM-CFD method[J]. Computers and Geotechnics, 140: 104438. doi: 10.1016/j.compgeo.2021.104438
    Nian T K, Liu M, Liu B, et al. 2016. Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 34 (4): 9-15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201604002.htm
    Nian T K, Song X L, Zhao W, et al. 2020. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation[J]. Environmental Geotechnics, doi: 10.1680/jenge.19.00070.
    Nian Y J, Zhu Y S, Chen Q, et al. 2014. The research and cognition of typical submarine landslide characteristics of Liuhua deepwater block[J]. Progress in Geophysics, 29 (3): 1412-1417. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201403057.htm
    Peng K R, Liu H S, Ping X Y, et al. 2021. Accuracy of drag force models in the CFD-DEM method[J]. Journal of Jilin University(Earth Science Edition), 51 (5): 1400-1407.
    Piper D J, Cochonat P, Morrison M L. 1999. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology, 46 (1): 79-97. doi: 10.1046/j.1365-3091.1999.00204.x
    Prior D B, Coleman J M. 1982. Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi Delta[M]//Marine slides and other mass movements. Springer: 21-49.
    Prior D B, Suhayda J N, Lu N Z, et al. 1989. Storm wave reactivation of a submarine landslide[J]. Nature, 341(6237): 47-50. doi: 10.1038/341047a0
    Qian X S, Xu J P, Bai Y, et al. 2020. Formation and estimation of peak impact force on suspended pipelines due to submarine debris flow[J]. Ocean Engineering, 195: 106695. doi: 10.1016/j.oceaneng.2019.106695
    Sahdi F, Gaudin C, White D J, et al. 2014. Centrifuge modelling of active slide-pipeline loading in soft clay[J]. Géotechnique, 64 (1): 16-27. doi: 10.1680/geot.12.P.191
    Saito H, Yokoyama T, Uchiyama S. 2006. Seafloor stability monitoring by displacements calculated from acceleration waveforms obtained by a 3-component servo-accelerometer system[C]//OCEANS 2006. [S.L. ]: IEEE: 1-6.
    Schwab W C, Lee H J, Twichell D C, et al. 1996. Sediment mass-flow processes on a depositional lobe, outer Mississippi Fan[J]. Journal of Sedimentary Research, 66 (5): 916-927.
    Shanmugam G, Wang Y. 2015. The landslide problem[J]. Journal of Palaeogeography, 4 (2): 109-166. doi: 10.3724/SP.J.1261.2015.00071
    Shire T, O Sullivan C. 2013. Micromechanical assessment of an internal stability criterion[J]. Acta Geotechnica, 8 (1): 81-90. doi: 10.1007/s11440-012-0176-5
    Si P F, Shi H B, Yu X P. 2018. Development of a mathematical model for submarine granular flows[J]. Physics of Fluids, 30(8): 83302. doi: 10.1063/1.5030349
    Si S W, Wang D W, He H Z, et al. 2021. Seabed instability investigation and assessment procedures[J]. Marine Geology Frontiers, 37 (2): 21-30.
    Stegmann S, Sultan N, Garziglia S, et al. 2012. A long-term monitoring array for landslide precursors: a case study at the ligurian slope(Western Mediterranean Sea)[C]//Offshore Technology Conference. Houston: [s. n. ].
    Stigall J, Dugan B. 2010. Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico[J]. Journal of Geophysical Research, 115(B4): B04101. doi: 10.1029/2009JB006848/pdf
    Stoecklin A, Trapper P, Puzrin A M. 2021. Controlling factors for post-failure evolution of subaqueous landslides[J]. Géotechnique, 71 (10): 879-892. doi: 10.1680/jgeot.19.P.230
    Sultan N, Cattaneo A, Sibuet J, et al. 2009. Deep sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake[J]. International Journal of Earth Sciences, 98 (4): 823-837. doi: 10.1007/s00531-008-0334-z
    Sultan N, Marsset B, Ker S, et al. 2010. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. Journal of Geophysical Research, 115(B8): B08101. http://www.researchgate.net/profile/Bruno_Marsset/publication/48382750_Hydrate_dissolution_as_a_potential_mechanism_for_pockmark_formation_in_the_Niger_Delta/links/02e7e52813bb9d4643000000/Hydrate-dissolution-as-a-potential-mechanism-for-pockmark-formation-in-the-Niger-Delta.pdf
    Sun Q L, Xie X N, Wu S G. 2021. Submarine landslides in the northern South China Sea: Characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 28 (2): 258-270.
    Sun Y B, Wu S G, Wang Z J, et al. 2008. The geometry and deformation characteristics of Baiyun submarine landslide[J]. Marine Geology & Quaternary Geology, 28 (6): 69-77. http://www.researchgate.net/publication/281468040_The_geometry_and_deformation_characteristics_of_Baiyun_Submarine_Landslide
    Sun Y F, Dong L F, Pu G J, et al. 2006. Stability analysis of slopes in the subaqueous delta of the Yellow River under storm wave loading[J]. Journal of Engineering Geology, 14 (5): 582-587. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200605001.htm
    Takahashi H, Fujii N, Sassa S. 2020. Centrifuge model tests of earthquake-induced submarine landslide[J]. International Journal of Physical Modelling in Geotechnics, 20 (4): 254-266. doi: 10.1680/jphmg.18.00048
    Talling P J, Wynn R B, Masson D G, et al. 2007. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 450(7169): 541-544. doi: 10.1038/nature06313
    Tan L, Liu F, Huang Y, et al. 2021. Production-induced instability of a gentle submarine slope: Potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 289: 106174. doi: 10.1016/j.enggeo.2021.106174
    Tang C R, Xu X G, Sun B C, et al. 2021. Influence factors and risk assessment for seabed landslides induced by natural gas hydrate decomposition[J]. Marine Geology Frontiers, 37 (5): 14-21.
    Tao Y Q. 2015. The analysis on submarine landslide based on a SPH depth-integrated model[D]. Dalian: Dalian University of Technology.
    Vanneste M, Sultan N, Garziglia S, et al. 2014. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations[J]. Marine Geology, 352 : 183-214. doi: 10.1016/j.margeo.2014.01.005
    Vendeville B C, Gaullier V. 2003. Role of pore-fluid pressure and slope angle in triggering submarine mass movements: Natural examples and pilot experimental models[M]//Submarine Mass Movements and Their Consequences. Springer: 137-144.
    Wallace L M, Webb S C, Ito Y, et al. 2016. Slow slip near the trench at the Hikurangi subduction zone, New Zealand[J]. Science, 352(6286): 701-704. doi: 10.1126/science.aaf2349
    Wang D, Randolph M F, White D J. 2013. A dynamic large deformation finite element method based on mesh regeneration[J]. Computers and Geotechnics, 54 : 192-201. doi: 10.1016/j.compgeo.2013.07.005
    Wang F W, Dai Z L, Zhang S. 2018a. Experimental study on the motion behavior and mechanism of submarine landslides[J]. Bulletin of Engineering Geology and the Environment, 77 (3): 1117-1126. doi: 10.1007/s10064-017-1143-z
    Wang F W, Dai Z L, Nakahara Y, et al. 2018b. Experimental study on impact behavior of submarine landslides on undersea communication cables[J]. Ocean Engineering, 148 : 530-537. doi: 10.1016/j.oceaneng.2017.11.050
    Wang J Q, Zhang G X, Chen D X, et al. 2019. Geological hazards in Lingshui region of Qiongdongnan Basin: Type, distribution and origin[J]. Marine Geology & Quaternary Geology, 39 (4): 87-95. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201904009.htm
    Wang L Z, Miao C Z. 2008. Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 30 (7): 982-987. http://www.cnki.com.cn/Article/CJFDTotal-YTGC200807008.htm
    Wang Z H, Jia Y G, Liu X L, et al. 2018. In situ observation of storm-wave-induced seabed deformation with a submarine landslide monitoring system[J]. Bulletin of Engineering Geology and the Environment, 77 (3): 1091-1102. doi: 10.1007/s10064-017-1130-4
    Wang Z H, Sun Y F, Jia Y G, et al. 2020. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—initiation and process of sediment failure[J]. Landslides, 17 (8): 1849-1862. doi: 10.1007/s10346-020-01399-2
    Wang Z T, Zhang Y, Yu L, et al. 2020. Centrifuge modelling of active pipeline-soil loading under different impact angle in soft clay[J]. Applied Ocean Research, 98: 102129. doi: 10.1016/j.apor.2020.102129
    Weaver P P, Wynn R B, Kenyon N H, et al. 2000. Continental margin sedimentation, with special reference to the north-east Atlantic margin[J]. Sedimentology, 47 : 239-256. doi: 10.1046/j.1365-3091.2000.0470s1239.x
    Weimer P, Slatt R M, Bouroullec R. 2007. Introduction to the petroleum geology of deepwater setting[M]. Tulsa: AAPG/Datapages.
    Wen F, Wang J H. 2014. Stability analysis of layered seabed under wave and current loading[J]. Journal of Shanghai Jiao Tong University, 48 (6): 793-797. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHJT201406011.htm
    Wu S G, Ma L W, Sun J, et al. 2021. Characteristic and current status of some large-scale geological disasters along the Maritime Silk Road[J]. Progress in Geophysics, 36 (1): 401-411.
    Wu S G, Sun Y B, Li Q P, et al. 2019. Deepwater geohazards in the South China Sea[M]. Beijing: Science Press.
    Xie Q H, Xiu Z X, Liu L J, et al. 2016. Back calculation of submarine landslide identified in the northwest coast of Sumatra[J]. Engineering Mechanics, 33 (12): 241-247. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCLX201612029.htm
    Yang Q L. 1994. The relationship between marine development and seafloor instability investigation studies[J]. Journal of Ocean Technology, 13 (4): 65-67.
    Yang Z S, Chen W M, Chen Z R, et al. 1994. Subaqueous landslide system in the Huanghe River(Yellow River) Delta[J]. Oceanologia et Limnologia Sinica, 25 (6): 573-581. http://www.researchgate.net/publication/303250908_Subaqueous_landslide_system_in_the_Huanghe_River_Yellow_River_delta
    Yin K L, Han Z S, Li Z Z. 2000. Progress of landslide researches in the world[J]. Hydrogeology & Engineering Geology, (5): 1-4. http://search.cnki.net/down/default.aspx?filename=SWDG200005000&dbcode=CJFD&year=2000&dflag=pdfdown
    Yu H Y, Liu X L, Lu Y. 2019. Advances in motion characteristics of submarine debris flow[J]. Bulletin of Geological Science and Technology, 38 (6): 25-32. http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201906005.htm
    Yu M, Lee C, Huang Z H. 2018. Impulsive waves generated by the collapse of a submerged granular column: A three-phase flow simulation with an emphasis on the effects of initial packing condition[J]. Journal of Earthquake and Tsunami, 12(2): 1840001. doi: 10.1142/S1793431118400018
    Yuan F, Wang L, Guo Z, et al. 2012. A refined analytical model for landslide or debris flow impact on pipelines. Part I: Surface pipelines[J]. Applied Ocean Research, 35 : 95-104. doi: 10.1016/j.apor.2011.12.001
    Zakeri A, Hawlader B, Chi K. 2012. Drag forces caused by submarine glide block or out-runner block impact on suspended(free-span) pipelines[J]. Ocean Engineering, 47 : 50-57. doi: 10.1016/j.oceaneng.2012.03.016
    Zakeri A, Høeg K, Nadim F. 2008. Submarine debris flow impact on pipelines—Part I: Experimental investigation[J]. Coastal Engineering, 55 (12): 1209-1218. doi: 10.1016/j.coastaleng.2008.06.003
    Zakeri A, Høeg K, Nadim F. 2009. Submarine debris flow impact on pipelines—Part Ⅱ: Numerical analysis[J]. Coastal Engineering, 56 (1): 1-10. doi: 10.1016/j.coastaleng.2008.06.005
    Zhang B K, Li S Z, Xia Z, et al. 2014. Time sequence of submarine landslides and gas hydrates in the northern South China Sea[J]. Geotectonica et Metallogenia, 38 (2): 434-440. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201402022.htm
    Zhang Q, Yang Z S, Lu N Z, et al. 1992. The analysis of instable hydropower mechanism on the Yellow River subaqueous slope[J]. Journal of Ocean, 14 (3): 133-141.
    Zhang W C, Askarinejad A. 2019a. Centrifuge modelling of submarine landslides due to static liquefaction[J]. Landslides, 16 (10): 1921-1938. doi: 10.1007/s10346-019-01200-z
    Zhang W C, Randolph M F, Puzrin A M, et al. 2019b. Transition from shear band propagation to global slab failure in submarine landslides[J]. Canadian Geotechnical Journal, 56 (4): 554-569. doi: 10.1139/cgj-2017-0648
    Zhang X, Oñate E, Torres S A G, et al. 2019. A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences[J]. Computer Methods in Applied Mechanics and Engineering, 343 : 314-338. doi: 10.1016/j.cma.2018.07.043
    Zhao E J, Dong Y K, Tang Y Z, et al. 2021. Numerical study on hydrodynamic load and vibration of pipeline exerted by submarine debris flow[J]. Ocean Engineering, 239: 109754. doi: 10.1016/j.oceaneng.2021.109754
    Zhao J, Shan T. 2013. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 239 : 248-258. doi: 10.1016/j.powtec.2013.02.003
    Zhao T, Utili S, Crosta G B. 2016. Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses[J]. Rock Mechanics and Rock Engineering, 49 (6): 2437-2456. doi: 10.1007/s00603-015-0731-0
    Zhao Y P, Kong L, Liu L L, et al. 2021. Stability analysis of submarine slope of hydrate-bearing sediments based on the two-step reduction method[J]. Natural Gas Industry, 41 (10): 141-153.
    Zheng D F, Lei D Y, Yan C L, et al. 2021. Global research trends in submarine landslides: A bibliometric analysis based on Web of Science publications[J].Journal of Engineering Geology, 29(6): 1805-1814.
    Zheng D F, Nian T K, Liu B, et al. 2019. Investigation of the stability of submarine sensitive clay slopes under wave-induced pressure[J]. Marine Georesources & Geotechnology, 37 (1): 116-127. http://www.onacademic.com/detail/journal_1000040884051410_9bfc.html
    Zhou J, Zhou K M, Yao Z X, et al. 2010. Numerical simulation of piping-filter prevention in sandy soil by discrete element method[J]. Journal of Hydraulic Engineering, (1): 17-24. http://qikan.cqvip.com/Qikan/Article/Detail?id=32964160
    Zhu C Q, Jia Y G, Liu X L, et al. 2015. Classification and genetic mechanism of submarine landslide: a review[J]. Marine Geology & Quaternary Geology, 35 (6): 153-163. http://www.researchgate.net/publication/287948956_Classification_and_Genetic_Mechanism_of_Submarine_Landslide_A_Review
    操应长, 杨田, 王艳忠, 等. 2017. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘, 24 (3): 234-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703027.htm
    常方强. 2009. 波浪作用下黄河口海底滑坡研究[D]. 青岛: 中国海洋大学.
    褚宏宪, 方中华, 史慧杰, 等. 2016. 曹妃甸海底深槽斜坡稳定性分析与评价[J]. 海洋工程, 34 (3): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201603013.htm
    戴晨, 夏非, 张永战. 2015. 南黄海辐射沙脊群海域历史地震的浅地层记录[J]. 海洋地质与第四纪地质, 35 (5): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201505013.htm
    邓检良, 张向霞, 黄凤荣. 2019. 基于旋转水槽试验的水下泥石流块状物体输运机理研究[J]. 工程地质学报, 27 (S1): 251-256. doi: 10.13544/j.cnki.jeg.2019098
    邓检良, 张向霞. 2020. 基于旋转水槽试验的水下泥石流底部水压研究[J]. 工程地质学报, 28 (5): 1000-1006. doi: 10.13544/j.cnki.jeg.2020-344
    范宁. 2019. 海底滑坡体的强度特性及其对管线的冲击作用研究[D]. 大连: 大连理工大学.
    范宁, 年廷凯, 焦厚滨, 等. 2019. 双椭流线型海底管线抵御滑坡冲击的减灾效果与降阻机制[J]. 岩土力学, 40 (1): 413-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901044.htm
    冯斌, 孙宏磊, 蔡袁强, 等. 2019. 海底滑坡对海洋单桩冲击力试验研究[J]. 海洋工程, 37 (6): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201906012.htm
    谷忠德, 郭兴森, 赵维, 等. 2021. 深海浅表层沉积物不排水剪切强度的多探头原位测试系统及评价方法研究[J].工程地质学报, 29(6): 1949-1955. doi: 10.13544/j.cnki.jeg.2021-0658
    顾小芸. 2000. 海洋工程地质的回顾与展望[J]. 工程地质学报, 8 (1): 40-45. doi: 10.3969/j.issn.1004-9665.2000.01.008
    郭兴森. 2021. 海底地震滑坡易发性与滑坡-管线相互作用研究[D]. 大连: 大连理工大学.
    霍沿东, 年廷凯, 焦厚滨, 等. 2019. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 27 (2): 408-414. doi: 10.13544/j.cnki.jeg.2017-621
    季春生, 贾永刚, 朱俊江, 等. 2021. 深海海底边界层原位观测系统研发与应用[J/OL]. 地学前缘, 2021-10-09, https://doi.org/10.13745/j.esf.sf.2021.9.28.
    贾永刚, 单红仙. 2000. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报, 11 (1): 1-5. doi: 10.3969/j.issn.1003-8035.2000.01.001
    贾永刚, 王振豪, 刘晓磊, 等. 2017. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报(自然科学版), 47 (10): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710010.htm
    解秋红, 修宗祥, 刘乐军, 等. 2016. 苏门答腊岛西北海域大型海底滑坡过程反分析[J]. 工程力学, 33 (12): 241-247. doi: 10.6052/j.issn.1000-4750.2015.05.0376
    景路, 郭颂怡, 赵涛. 2019. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学, 40 (1): 388-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901041.htm
    寇养琦. 1990. 南海北部的海底滑坡[J]. 海洋与海岸带开发, 7 (3): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGL199003010.htm
    李东黎, 晏鄂川, 冯斌, 等. 2019. 海底碎屑流对海洋桩的冲击[J]. 浙江大学学报(工学版), 53 (12): 2342-2347. doi: 10.3785/j.issn.1008-973X.2019.12.011
    李家钢, 修宗祥, 申宏, 等. 2012. 海底滑坡块体运动研究综述[J]. 海岸工程, 31 (4): 67-78. doi: 10.3969/j.issn.1002-3682.2012.04.009
    李伟. 2013. 南海北部海底滑坡的地震特征及成因分析[D]. 北京: 中国科学院研究生院.
    刘保华, 李西双, 赵月霞, 等. 2005. 冲绳海槽西部陆坡碎屑沉积物的搬运方式: 滑塌和重力流[J]. 海洋与湖沼, 36 (1): 1-9. doi: 10.3321/j.issn:0029-814X.2005.01.001
    刘敏, 刘博, 年廷凯, 等. 2015. 线性波浪加载下海底斜坡失稳机制的数值分析[J]. 地震工程学报, 37 (2): 415-421. doi: 10.3969/j.issn.1000-0844.2015.02.0415
    刘涛, 崔逢, 张美鑫. 2015. 深海海床孔隙水压力原位观测技术研究进展[J]. 水利学报, 46 (S1): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1021.htm
    刘涛, 张美鑫, 崔逢, 等. 2018. 基于FBG的深海海床超孔压观测设备适用性研究[J]. 地下空间与工程学报, 14 (2): 514-522. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802030.htm
    马林伟, 吴时国. 2019. 海底滑坡过程的分段模拟研究[C]//国家安全地球物理丛书(十五)——丝路环境与地球物理: 65-69.
    马云. 2014. 南海北部陆坡区海底滑坡特征及触发机制研究[D]. 青岛: 中国海洋大学.
    倪玉根, 夏真, 马胜中. 2013. 与天然气水合物分解有关的海底滑坡和气候突变事件[J]. 南海地质研究, (1): 73-81.
    年廷凯, 刘敏, 刘博, 等. 2016. 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 34 (4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC201604002.htm
    年永吉, 朱友生, 陈强, 等. 2014. 流花深水区块典型滑坡特征的研究与认识[J]. 地球物理学进展, 29 (3): 1412-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403057.htm
    彭恺然, 刘红帅, 平新雨, 等. 2021. CFD-DEM耦合模拟中拖曳力模型精度[J]. 吉林大学学报(地球科学版), 51 (5): 1400-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202105013.htm
    司少文, 王大伟, 贺惠忠, 等. 2021. 海底失稳调查与评价流程[J]. 海洋地质前沿, 37 (2): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202102003.htm
    孙启良, 解习农, 吴时国. 2021. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 28 (2): 258-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102019.htm
    孙永福, 董立峰, 蒲高军, 等. 2006. 风暴潮作用下黄河水下三角洲斜坡稳定性研究[J]. 工程地质学报, 14 (5): 582-587. doi: 10.3969/j.issn.1004-9665.2006.05.002
    孙运宝, 吴时国, 王志君, 等. 2008. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 28 (6): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200806012.htm
    唐常锐, 徐秀刚, 孙秉才, 等. 2021. 天然气水合物分解诱发海底滑坡影响因素分析及致灾风险评价[J]. 海洋地质前沿, 37 (5): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202105002.htm
    陶言祺. 2015. 基于SPH深度积分模型的海底滑坡数值分析[D]. 大连: 大连理工大学.
    王俊勤, 张广旭, 陈端新, 等. 2019. 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制[J]. 海洋地质与第四纪地质, 39 (4): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201904009.htm
    王立忠, 缪成章. 2008. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 30 (7): 982-987. doi: 10.3321/j.issn:1000-4548.2008.07.006
    文锋, 王建华. 2014. 波浪-流作用下分层海床稳定性分析[J]. 上海交通大学学报, 48 (6): 793-797. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201406011.htm
    吴时国, 马林伟, 孙金, 等. 2021. 海上丝绸之路大型地质灾害: 特点与现状[J]. 地球物理学进展, 36 (1): 401-411. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101045.htm
    吴时国, 孙运宝, 李清平, 等. 2019. 南海深水地质灾害[M]. 北京: 科学出版社.
    杨启伦. 1994. 海洋开发和海底不稳定性调查研究的关系[J]. 海洋技术, 13 (4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS404.008.htm
    杨作升, 陈卫民, 陈彰榕, 等. 1994. 黄河口水下滑坡体系[J]. 海洋与湖沼, 25 (6): 573-581. doi: 10.3321/j.issn:0029-814X.1994.06.001
    殷坤龙, 韩再生, 李志中. 2000. 国际滑坡研究的新进展[J]. 水文地质工程地质, (5): 1-4. doi: 10.3969/j.issn.1000-3665.2000.05.001
    余和雨, 刘晓磊, 陆杨. 2019. 海底碎屑流运动特性研究的若干进展[J]. 地质科技情报, 38 (6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906005.htm
    张丙坤, 李三忠, 夏真, 等. 2014. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 38 (2): 434-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402022.htm
    张琦, 杨作升, 陆念祖, 等. 1992. 黄河口水下底坡不稳定的水动力机制探讨[J]. 海洋学报, (3): 133-141. doi: 10.3321/j.issn:0253-4193.1992.03.001
    赵亚鹏, 孔亮, 刘乐乐, 等. 2021. 基于两步折减法的含天然气水合物沉积物海底斜坡稳定性分析[J]. 天然气工业, 41 (10): 141-153. doi: 10.3787/j.issn.1000-0976.2021.10.016
    郑德凤, 雷得浴, 闫成林, 等. 2021. 基于Web of Science数据库的海底滑坡研究趋势文献计量分析[J].工程地质学报, 29(6): 1805-1814. doi: 10.13544/j.cnki.jeg.2021-0712
    周健, 周凯敏, 姚志雄, 等. 2010. 砂土管涌-滤层防治的离散元数值模拟[J]. 水利学报, (1): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201001005.htm
    朱超祁, 贾永刚, 刘晓磊, 等. 2015. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 35 (6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  70
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2021-12-24
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回