VOLUME METHOD BASED POTENTIAL EVALUATION ON MINE WATER-BASED GEOTHERMAL RESERVOIR IN ABANDONED COAL MINE
-
摘要: 基于空间守恒-采矿损伤不变量方程,类比分析煤矿全垮落法长壁开采采空区垮落带和裂隙带覆岩破坏模式,推导夹河煤矿采空区垮落带和裂隙带垂向碎胀与空隙分布线性和对数函数表达式,提出煤矿采空区“两带”垂向碎胀-空隙特征演化过程的多阶段概念模型。在获得采空区覆岩“两带”空隙特征参数的基础上,结合“两带”空间范围呈倒漏斗状梯形结构假设计算夹河煤矿废弃采空区等效空隙/储水体积。进一步以体积法为基础,对废弃夹河煤矿矿井水所形成的中低焓热储热流体开发潜能进行评估。研究结果表明:夹河煤矿单个典型工作面采空区空隙储水体积约(3.4~3.8)×105 m3,顶板岩性影响“两带”碎胀与空隙垂向分布,进而影响“两带”空隙储水体积约10%;废弃煤矿井巷空间储水体积小于采空区空隙储水体积约2个数量级,废弃煤矿地热资源化利用应更多关注采空区储水/热潜能;综合考虑井、巷和采场结构差异性,估算废弃夹河煤矿矿井水热流体的总体积约2.2×107 m3,静态热储潜能约127 GWh(~4.6×105 GJ),导热和对流热补给效应明显,可为废弃煤矿遗留形成的地热资源勘查及后续开发利用提供参考。Abstract: One basic principle of the 'equilibrium mining' theory is the space conservation-based mining damage invariant equation. This paper analogically analyzes the damage patterns between caving and fractured zones in a long-wall coal mining goaf. Specifically,the paper derives linear(caving zone) and logarithmic(fractured zone) functional expressions to capture the vertical expansion and void distribution characteristics of the above two-zones in abandoned Jiahe colliery. On this basis,a multi-stage conceptual model is then proposed to describe the evolution processes of the vertical expansion and void distribution characteristics of the two-zone. After the required void characteristic parameters of the two-zone are obtained,the paper roughly calculates the void/water-storage volume under the hypothesis of inverted trapezoidal shape of the two-zone structure. Accordingly,the potential of the mine water-based low enthalpy geothermal fluid formed in abandoned and thereafter flooded Jiahe coal mine is evaluated using the volume method. The results indicate that the estimated water storage capacity contained in a typical long-wall mining goaf in abandoned Jiahe mine is 3.4~3.8×105 m3. The overlying rock lithology affects the bulking factor and void ratio vertical distribution in the caving and fractured two-zones,and thereby the water volume and geothermal potential of the order of 10%. Moreover,the void-water stored in mining gobs is about two orders of magnitude larger than that in the shafts and tunnels for abandoned coal mines,which need to have more attention in future study. Finally,the total estimated water storage capacity of the abandoned Jiahe colliery is about 2.2×107 m3,corresponding to a static geothermal potential of approximately 127 GWh(~4.6×105 GJ),which may provide guideline for further exploration and exploitation.
-
Key words:
- Mining engineering /
- Goaf /
- Bulking /
- Void /
- Volume method /
- Geothermal reservoir assessment
-
表 1 垮落带和裂隙带高度计算经验公式参数取值
Table 1. The coefficients with different compressive strength in caving and fractured zones
覆岩类型 单轴抗压强度/MPa 垮落带 裂隙带 C1 C2 C3 C4 Ⅰ-坚硬 ≥ 40 2.1 16 1.2 2.0 Ⅱ-中硬 [20,40) 4.7 19 1.6 3.6 Ⅲ-软弱 [10,20) 6.2 32 3.1 5.0 Ⅳ-极软 <10 7.0 63 5.0 8.0 表 2 夹河煤矿单工作面采空区采动/废弃空间参数
Table 2. Pore characteristic parameters for one long-wall face in mined/abandoned Jiahe colliery gob
覆岩类型 Hm/m Smax/m 垮落带 裂隙带 Hc/m $\overline{k_{\mathrm{c}}}$ $\overline{\varnothing_{\mathrm{c}}}$/% Hf/m $\overline{k_{\mathrm{f}}} $ $\overline{\varnothing_{\mathrm{f}}} $/% Ⅰ 3 0.141 13.45 1.07 6.96 53.57 1.03 3.34 Ⅱ 9.06 1.11 9.61 35.71 1.05 5.04 Ⅲ 5.93 1.16 14.04 20.98 1.09 8.27 Ⅳ 3.57 1.25 19.99 13.04 1.15 13.10 表 3 夹河煤矿废弃采空区储水体积参数估算(89个800 m×200 m×3 m尺寸假定工作面)
Table 3. Water volume estimation in Jiahe colliery(assumed 89 working faces with the size of 800 m×200 m×3 m)
覆岩类型 Vc/m3 Vf/m3 Vpc/m3 Vpf/m3 Vp/m3 假定工作面数量 总空隙体积/m3 中硬顶板①/平均② Ⅰ-坚硬 2 169 024 5 681 827 150 878 189 984 340 863 89 30 336 807 V① ≈ 3.28×107 m3
V② ≈ 3.30×107 m3
①7#主采煤层顶板
②4类顶板平均Ⅱ-中硬 1 534 627 4 381 937 147 497 220 819 368 316 32 780 165 Ⅲ-软弱 1 070 446 2 859 927 150 269 236 447 386 717 34 417 837 Ⅳ-极软 700 288 1 889 802 139 971 247 624 387 596 34 496 025 表 4 夹河煤矿废弃井巷空间储水体积估算
Table 4. Water volume estimation on space deduced by shaft and tunnel in abandoned Jiahe colliery
井巷名称 参数 深/长度 储水体积/m3 井筒 主井 净直径4.5 m 井口+43.2 m,井底-298.8 m,总深度342 m 13 155 副井 净直径7 m 井口+43.2 m,井底-626.8 m,总深度670 m 10 650 风井 净直径5 m 井口+43 m,井底-280 m,总深度323 m 6339 新风井 净直径5.5 m ~,总深度1060 m 25 171 巷道 井底车场巷道 净断面15 m2 4160 m 62 400 东翼进风大巷 净断面14.8 m2 712 m 10 538 西翼进风大巷 净断面11.8 m2 1270 m 14 986 西辅猴车运输巷 净断面11.1 m2 626 m 6949 东、西总回风巷 净断面11.4 m2 3265 m 37 221 总计 194 811 m3 表 5 夹河煤矿矿井水热储潜能静态估算
Table 5. Geothermal potential in the mine water of Jiahe colliery
参数 工况1 工况2 工况3 工况4(采纳) 储水体积/m3 2.2×107 矿井水密度/kg·m-3 1000 矿井水比热/kJ·(kg·K)-1 4.18 能量转换系数/kWh·kJ-1 0.000 277 8 矿井水进出温差/℃ 15 50 30 5 矿井水热储潜能/kWh 3.82×108 1.28×109 7.67×108 1.27×108 其他能源形式等效量 天然气/m3 3.70×107 1.23×108 7.40×107 1.23×107 石油/m3 1.05×105 3.50×105 2.10×105 3.50×104 标准煤/t 1.98×105 6.62×105 3.97×105 6.60×104 表 6 采空区空隙空间等效虚拟圆柱直径
Table 6. Diameters of the equivalent virtual void cylinder
覆岩类型 空隙体积 假设空隙圆柱体直径 Vp/m3 D3/m Ⅰ 340 863 23.29 取平均值24.3(与7#主采煤层中硬顶板时的24.21相差不大) Ⅱ 368 316 24.21 Ⅲ 386 717 24.81 Ⅳ 387 596 24.84 -
Andrews B J, Cumberpatch Z A, Shipton Z K, et al. 2020. Collapse processes in abandoned pillar and stall coal mines: Implications for shallow mine geothermal energy[J]. Geothermics, 88:101904. doi: 10.1016/j.geothermics.2020.101904 Bao T, Meldrum J, Green C, et al. 2019. Geothermal energy recovery from deep flooded copper mines for heating[J]. Energy Conversion and Management, 183 : 604-616. doi: 10.1016/j.enconman.2019.01.007 China National Coal Association. 2021. Annual report on coal industry development in 2020[R]. Beijing: China National Coal Association: 1-35. Díez R, Díaz-Aguado M. 2014. Estimating limits for the geothermal energy potential of abandoned underground coal mines: A simple methodology[J]. Energies, 7 (7): 4241-4260. doi: 10.3390/en7074241 Fan J, Xie H, Chen J, et al. 2020. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy, 258: 114007. doi: 10.1016/j.apenergy.2019.114007 Gu D Z. 2015. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 40 (2): 239-246. Guo G L, Miao X X, Zhang Z N. 2002. Research on ruptured rock mass deformation characteristics of longwall goafs[J]. Science Technology and Engineering, 2 (5): 44-47. Guo P Y, Zheng L E, Sun X M, et al. 2018. Sustainability evaluation model of geothermal resources in abandoned coal mine[J]. Applied Thermal Engineering, 144 (5): 804-811. Hall A, Scott J A, Shang H. 2011. Geothermal energy recovery from underground mines[J]. Renewable and Sustainable Energy Reviews, 15 (2): 916-924. doi: 10.1016/j.rser.2010.11.007 Hamm V, Sabet B B. 2010. Modelling of fluid flow and heat transfer to assess the geothermal potential of a flooded coal mine in Lorraine, France[J]. Geothermics, 39 (2): 177-186. doi: 10.1016/j.geothermics.2010.03.004 He M C, Wang Q, Wu Q. 2021. Innovation and future of mining rock mechanics[J]. Journal of Rock Mechanics and Geotechnical Engineering, 13 (1): 1-21. doi: 10.1016/j.jrmge.2020.11.005 Jardón S, Ordóñez A, Álvarez R, et al. 2013. Mine water for energy and water supply in the central coal basin of Asturias(Spain)[J]. Mine Water and the Environment, 32 (2): 139-151. doi: 10.1007/s10230-013-0224-x Jessop A M, Macdonald J K, Spence H. 1995. Clean energy from abandoned mines at Springhill, Nova Scotia[J]. Energy Sources, 17 (1): 93-106. doi: 10.1080/00908319508946072 Jiang D Y, Chen S, Liu W H, et al. 2021. Underground hydro-pumped energy storage using coal mine goafs: system performance analysis and a case study for China[J]. Frontiers in Earth Science, 9: 760474. Jin D W, Duan J H, Li L C, et al. 2021. Microseismicity based research for mining induced fracture propagation and wter pathway identification technology of floor[J]. Journal of Engineering Geology, 29 (4): 962-971. Ju J F, Xu J L, Zhu W B. 2017. Storage capacity of underground reservoir in the Chinese western water-short coalfield[J]. Journal of China Coal Society, 42 (2): 381-387. Kang F C, Tang C A. 2020. Overview of enhanced geothermal system(EGS)based on excavation in China[J]. Earth Science Frontiers, 27 (1): 185-193. Li X Y, Zhao M H, Yang Y H, et al. 2018. Thermal reservoir distribution characteristics and resource potential evaluation of limestone in Jiyang depression[J]. Journal of Engineering Geology, 26 (4): 1105-1112. Liang B, Wang B F, Jiang L G, et al. 2016. Broken expand properties of caving rock in shallow buried goaf[J]. Journal of China University of Mining & Technology, 45 (3): 475-482. Liu T Q. 1995. Influence of mining activities on mine rockmass and control engineering[J]. Journal of China Coal Society, 20 (1): 1-5. Loredo C, Roqueni N, Ordonez A. 2016. Modelling flow and heat transfer in flooded mines for geothermal energy use: A review[J]. International Journal of Coal Geology, 164(SI): 115-122. Lu P, Zhou L, Cheng S, et al. 2020. Main challenges of closed/abandoned coal mine resource utilization in China[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42 (22): 2822-2830. doi: 10.1080/15567036.2019.1618992 Mclean S H, Chenier J, Muinonen S, et al. 2020. Recovery and repurposing of thermal resources in the mining and mineral processing industry[J]. Journal of Sustainable Mining, 19 (2): 115-125. Menendez J, Ordonez A, Alvarez R, et al. 2019. Energy from closed mines: Underground energy storage and geothermal applications[J]. Renewable and Sustainable Energy Reviews, 108 : 498-512. doi: 10.1016/j.rser.2019.04.007 Meng Z P, Shi X C, Liu S S, et al. 2016. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of China Coal Society, 41 (3): 537-544. Muffler P, Cataldi R. 1977. Methods for regional assessment of geothermal resources[J]. Geothermics, 7 (2): 53-89. Preene M, Younger P L. 2014. Can you take the heat?-Geothermal energy in mining[J]. Mining Technology, 123 (2): 107-118. doi: 10.1179/1743286314Y.0000000058 Pu H, Bian Z F, Zhang J X, et al. 2021. Research on a reuse mode of geothermal resources in abandoned coal mines[J]. Journal of China Coal Society, 46 (2): 677-686. Renz A, Ruehaak W, Schaetzl P, et al. 2009. Numerical modeling of geothermal use of mine water: Challenges and Examples[J]. Mine Water and the Environment, 28 (1): 2-14. doi: 10.1007/s10230-008-0063-3 Thomas D J. 2017. Abandoned coal mine geothermal for future wide scale heat networks[J]. Fuel, 189: 445. doi: 10.1016/j.fuel.2016.10.115 Wang B F, Liang B, Jiang L G, et al. 2015. Fractal calculation and application of water storage in void of caving rock in the goaf[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (7): 1444-1451. Wang B F, Liang B, Wang J G, et al. 2018. Experiment study on rock bulking of coal mine underground reservoir[J]. Rock and Soil Mechanics, 39 (11): 4086-4101. Xie H P, Gao M Z, Liu J Z, et al. 2018. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society, 43 (6): 1487-1503. Xie H, Zhao J W, Zhou H W, et al. 2020. Secondary utilizations and perspectives of mined underground space[J]. Tunnelling and Underground Space Technology, 96: 103129. doi: 10.1016/j.tust.2019.103129 Xu J L, Qian M G, Jin H W. 2004. Study and application of bed separation distribution and development in the process of strata movement[J]. Chinese Journal of Geotechnical Engineering, 26 (5): 632-636. Xu J Y, Cui H R, Ge C G, et al. 2021. Hydrogeochemical characteristics and source identification of deep geothermal water in Qingdong coal mine, Huaibei, Anhui province[J]. Journal of Engineering Geology, 29 (4): 1037-1047. Yavuz H. 2004. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics & Mining Sciences, 41 (2): 193-205. Yu H, Chen B Q, Kang J R, et al. 2021. Research on surface deformation law of closed mines based on SBAS-InSAR[J]. Industry and Mine Automation, 47 (2): 45-51. Yuan L, Jiang Y D, Wang K, et al. 2018. Precision exploitation and utilization of closed/abandoned mine resources in China[J]. Journal of China Coal Society, 43 (1): 14-20. Zhang C, Wang F, Bai Q. 2021. Underground space utilization of coalmines in China: A review of underground water reservoir construction[J]. Tunnelling and Underground Space Technology, 107: 103657. doi: 10.1016/j.tust.2020.103657 Zhang C, Zhao Y X, Tu S H, et al. 2020. Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf[J]. Chinese Journal of Geotechnical Engineering, 42 (4): 696-704. Zhang P S, Zhu H C, Wu Y H, et al. 2021. State-of-the-art of mechanism of water inrush from bedseparation and key technology of prevention and control in China[J]. Journal of Engineering Geology, 29 (4): 1057-1070. 顾大钊. 2015. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 40 (2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm 郭广礼, 缪协兴, 张振南. 2002. 老采空区破裂岩体变形性质研究[J]. 科学技术与工程, 2 (5): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200205014.htm 靳德武, 段建华, 李连崇, 等. 2021. 基于微震的底板采动裂隙扩展及导水通道识别技术研究[J]. 工程地质学报, 29 (4): 962-971. doi: 10.13544/j.cnki.jeg.2021-0330 鞠金峰, 许家林, 朱卫兵. 2017. 西部缺水矿区地下水库保水的库容研究[J]. 煤炭学报, 42 (2): 381-387. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201702016.htm 亢方超, 唐春安. 2020. 基于开挖的增强型地热系统概述[J]. 地学前缘, 27 (1): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001023.htm 李晓燕, 赵铭海, 杨永红, 等. 2018. 济阳坳陷灰岩热储分布特征及资源潜力评价[J]. 工程地质学报, 26 (4): 1105-1112. doi: 10.13544/j.cnki.jeg.2016-305 梁冰, 汪北方, 姜利国, 等. 2016. 浅埋采空区垮落岩体碎胀特性研究[J]. 中国矿业大学学报, 45 (3): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201603008.htm 刘天泉. 1995. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 20 (1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB501.000.htm 孟召平, 师修昌, 刘珊珊, 等. 2016. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报, 41 (3): 537-544. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603003.htm 浦海, 卞正富, 张吉雄, 等. 2021. 一种废弃矿井地热资源再利用系统研究[J]. 煤炭学报, 46 (2): 677-686. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102030.htm 汪北方, 梁冰, 姜利国, 等. 2015. 采空区垮落岩体空隙储水分形计算及应用研究[J]. 岩石力学与工程学报, 34 (7): 1444-1451. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507017.htm 汪北方, 梁冰, 王俊光, 等. 2018. 煤矿地下水库岩体碎胀特性试验研究[J]. 岩土力学, 39 (11): 4086-4101. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811022.htm 谢和平, 高明忠, 刘见中, 等. 2018. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 43 (6): 1487-1503. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806001.htm 许继影, 桂和荣, 葛春贵, 等. 2021. 淮北青东煤矿深层地热水的水文地球化学特征与水源识别[J]. 工程地质学报, 29 (4): 1037-1047. doi: 10.13544/j.cnki.jeg.2021-0336 许家林, 钱鸣高, 金宏伟. 2004. 岩层移动离层演化规律及其应用研究[J]. 岩土工程学报, 26 (5): 632-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405011.htm 余昊, 陈炳乾, 康建荣, 等. 2021. 基于SBAS-InSAR的关闭矿井地表形变规律研究[J]. 工矿自动化, 47 (2): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD202102008.htm 袁亮, 姜耀东, 王凯, 等. 2018. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报, 43 (1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801003.htm 张村, 赵毅鑫, 屠世浩, 等. 2020. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究[J]. 岩土工程学报, 42 (4): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004016.htm 张培森, 朱慧聪, 吴玉华, 等. 2021. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报, 29 (4): 1057-1070. doi: 10.13544/j.cnki.jeg.2021-0329 中国煤炭工业协会. 2021.2020年煤炭行业发展年度报告[R]. 北京: 1-35. -