饱和硬岩直接拉伸强度的估算与验证

朱俊 邓建辉 付自国

朱俊, 邓建辉, 付自国. 2023. 饱和硬岩直接拉伸强度的估算与验证[J]. 工程地质学报, 31(5): 1605-1614. doi: 10.13544/j.cnki.jeg.2022-0017
引用本文: 朱俊, 邓建辉, 付自国. 2023. 饱和硬岩直接拉伸强度的估算与验证[J]. 工程地质学报, 31(5): 1605-1614. doi: 10.13544/j.cnki.jeg.2022-0017
Zhu Jun, Deng Jianhui, Fu Ziguo. 2023. Estimation and verification of uniaxial tensile strength of saturated hard rocks [J]. Journal of Engineering Geology, 31(5): 1605-1614. doi: 10.13544/j.cnki.jeg.2022-0017
Citation: Zhu Jun, Deng Jianhui, Fu Ziguo. 2023. Estimation and verification of uniaxial tensile strength of saturated hard rocks [J]. Journal of Engineering Geology, 31(5): 1605-1614. doi: 10.13544/j.cnki.jeg.2022-0017

饱和硬岩直接拉伸强度的估算与验证

doi: 10.13544/j.cnki.jeg.2022-0017
基金项目: 

国家自然科学基金面上项目 41772322

国家自然科学基金区域联合基金 U19A2098

详细信息
    作者简介:

    朱俊(1989-),男,博士,助理研究员,主要从事岩土工程与地质灾害方面的科研工作. E-mail:zhujun@imde.ac.cn

    通讯作者:

    邓建辉(1965-),男,博士,教授,博士生导师,主要从事地质灾害方面的科研与教学工作. E-mail:jhdeng@scu.edu.cn

  • 中图分类号: P642.3

ESTIMATION AND VERIFICATION OF UNIAXIAL TENSILE STRENGTH OF SATURATED HARD ROCKS

Funds: 

the National Natural Science Foundation of China 41772322

the National Natural Science Foundation of China U19A2098

  • 摘要: 因试样制备、试验操作等限制,获得饱和岩石的直接拉伸强度较为困难。为对饱和硬岩的直接拉伸强度进行合理估算并验证其可靠性,同时分析水对估算误差的影响,设计完成了干燥、饱和状态下两种硬岩的单轴压缩和直接拉伸声发射试验。基于Griffith理论和Hoek-Brown(H-B)强度准则,通过裂纹体积应变法确定岩石起裂应力,估算饱和硬岩的直接拉伸强度和H-B强度参数mi。结合声发射波形信号频谱特性,分析两者估算结果的准确性。结果表明,基于Griffith准则并采用起裂应力估算饱和硬岩的直接拉伸强度是一种较可靠的方法。对于干燥硬岩,该方法确定的直接拉伸强度估算值比试验值偏小。饱和硬岩直接拉伸强度估算值与试验值基本接近,这是因为硬岩饱和后,延性和蠕变趋向增强,并发生更多的微观拉破裂。饱和硬岩的mi值增大与增多的微观拉破裂有关,mi值变化可用于描述饱和硬岩的软化程度。基于Griffith准则并采用起裂应力估算的岩石直接拉伸强度和H-B强度参数mi可用于岩体工程的早期设计。
  • 图  1  大岗山水电站引水隧洞工程岩体拉伸破坏

    Figure  1.  Tensile failure of rock mass in diversion tunnel of Dagangshan station

    图  2  不同方法确定起裂应力示意图

    Figure  2.  Diagram of crack initiation stress identification by different methods

    图  3  岩石矿物成分分析与加工后试样

    Figure  3.  Mineral composition of marble and samples after processed

    图  4  单轴压缩试样加载示意图

    a. 位移传感器与探头布置;b. 声发射探头分布

    Figure  4.  Schematic diagram of sample loading for uniaxial compression tests

    图  5  直接拉伸试验装置与试样加载示意图

    Figure  5.  Diagram of devices and sample loading for direct tensile tests

    图  6  干燥、饱和岩石单轴压缩与直接拉伸强度

    a. 单轴抗压强度UCS;b. 直接拉伸强度UTS

    Figure  6.  Uniaxial compressive strength and direct tensile strength of dry and saturated rocks

    图  7  典型大理岩试样裂纹体积应变曲线

    a. 干燥大理岩试样CMD1;b. 饱和大理岩试样CMS1

    Figure  7.  Crack volumetric strain curve of typical marble specimen

    图  8  典型灰岩试样裂纹体积应变曲线

    a. 干燥灰岩试样CLD1;b. 饱和灰岩试样CLS1

    Figure  8.  Crack volumetric strain curve of typical limestone specimen

    图  9  两种岩石的拉伸强度估算值与试验均值对比

    a. 大理岩;b. 灰岩

    Figure  9.  Comparison of estimated and experimental mean tensile strength

    图  10  典型声发射信号时域和频谱图

    a. 时域图;b. 频域图

    Figure  10.  The time and domain spectrum of one typical AE waveform

    图  11  压缩条件下干燥、饱和硬岩声发射高低主频占比

    Figure  11.  The proportion of high and low dominant frequency of AE waveforms for dry and saturated hard rocks under compression

    表  1  试样基本物理力学参数

    Table  1.   Basic physical parameters of samples

    岩石类型 组别 编号 天然密度/kg·m-3 孔隙度/% 纵波波速/m·s-1
    大理岩 1 CMD1~6 2.68 (±0.06) 6.31 (±0.18) 4236 (±27.81)
    2 CMS1~6
    3 TMD1~6
    4 TMS1~6
    灰岩 1 CLD1~6 2.63 (±0.12) 4.46 (±0.11) 3352 (±21.38)
    2 CLS1~6
    3 TLD1~6
    4 TLS1~6
    括号内表示参数标准差。试样编号ABCn中,A代表试验类别,其中C表示压缩试验,T表示直接拉伸试验;B代表岩石类型,其中M表示大理岩,L表示灰岩;C代表试样状态,其中D代表干燥试样,S代表饱和试样;n表示第n个样本。
    下载: 导出CSV

    表  2  大理岩抗拉强度σt和强度参数mi估算值统计

    Table  2.   Practical estimate of tensile strength σt and strength parameter mi of marble

    岩石类型 试样编号 状态 σci/MPa σci/σc/% σt估算/MPa σt估算误差/% mi估算
    大理岩 CMD-1 干燥 17.30 25.34 2.16 12.80 32
    CMD-2 19.38 30.08 2.42 2.32 27
    CMD-3 18.50 28.32 2.31 6.75 28
    CMD-4 17.58 26.71 2.20 11.39 30
    CMD-5 19.06 27.48 2.38 3.93 29
    CMD-6 17.53 27.35 2.19 11.64 29
    均值 18.23 27.55 2.28 8.14 29
    CMS-1 饱和 13.45 25.56 1.68 3.93 31
    CMS-2 13.78 25.92 1.72 1.57 31
    CMS-3 13.26 25.97 1.66 5.31 31
    CMS-4 12.96 24.34 1.62 7.43 33
    CMS-5 12.91 25.20 1.61 7.79 32
    CMS-6 13.45 24.54 1.68 3.93 33
    均值 13.30 25.26 1.66 4.01 32
    灰岩 CLD-1 干燥 48.76 36.88 6.10 11.28 22
    CLD-2 52.91 38.51 6.61 3.73 21
    CLD-3 41.63 31.90 5.20 24.25 25
    CLD-4 46.74 35.64 5.84 14.96 22
    CLD-5 47.99 35.34 6.00 12.68 23
    CLD-6 49.81 38.16 6.23 9.37 21
    均值 47.97 36.07 6.00 12.71 22
    CLS-1 饱和 32.47 32.49 4.06 6.05 25
    CLS-2 31.82 31.37 3.98 7.93 25
    CLS-3 34.34 33.42 4.29 0.64 24
    CLS-4 30.99 31.46 3.87 10.33 25
    CLS-5 31.77 30.70 3.97 8.07 26
    CLS-6 32.82 32.75 4.10 5.03 24
    均值 32.37 32.03 4.05 6.34 25
    下载: 导出CSV
  • Bieniawski Z T. 1967. Mechanism of brittle fracture of rock, parts I, Ⅱ and Ⅲ[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4 (4): 395-430.
    Brook N. 1993. The measurement and estimation of basic rock strength[J]. Rock Testing and Site Characterization: 41-66.
    Cai M. 2010. Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks[J]. Rock Mechanics and Rock Engineering, 43 (2): 167-184. doi: 10.1007/s00603-009-0053-1
    Chen T C, Yeung M R, Mori N. 2004. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 38(2-3): 127-136. doi: 10.1016/j.coldregions.2003.10.001
    Deng J H, Li L R, Chen F, et al. 2018. Twin-peak frequencies of acoustic emission due to the fracture of marble and their possible mechanism[J]. Advanced Engineering Sciences, 50 (5): 12-17.
    Erguler Z, Ulusay R. 2009. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 46 (2): 355-370. doi: 10.1016/j.ijrmms.2008.07.002
    Fahimifar A, Malekpour M. 2012. Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts[J]. Bulletin of Engineering Geology and the Environment, 71 (2): 269-283. doi: 10.1007/s10064-011-0402-7
    Gorski B, Conlon B, Ljunggren B. 2007. Forsmark site investigation: determination of the direct and indirect tensile strength on cores from borehole KFM01D[R]. Stockholm: Svensk kärnbränslehantering(SKB).
    Griffith A. 1924. The theory of rupture[C]//Proceedings of the 1st International Congress on Applied Mechanics: 54-63.
    Hoek E, Bieniawski Z T. 1984. Brittle fracture propagation in rock under compression[J]. International Journal of Fracture Mechanics, 26 (4): 276-294. doi: 10.1007/BF00962960
    Hoek E, Brown E T. 1980a. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, 106 (9): 1013-1035. doi: 10.1061/AJGEB6.0001029
    Hoek E, Brown E T. 1980b. Underground excavations in rocks[M]. London: Institution of Mining and Metallurgy: 527.
    Hoek E. 2000. Practical rock engineering[M/OL]. http://www.rocscience.com.
    Huang D, Li B, Ma W Z, et al. 2020. Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test[J]. Theoretical and Applied Fracture Mechanics, 108: 102625. doi: 10.1016/j.tafmec.2020.102625
    Jia X N. 2013. Experimental study on acoustic emission Eigen-frequency spectrum of strainbursts[D]. Beijing: China University of Mining and Technology(Beijing).
    Kim J, Lee K, Cho W, et al. 2015. A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock[J]. Rock Mechanics and Rock Engineering, 48 (2): 495-508. doi: 10.1007/s00603-014-0590-0
    Li D Y, Wong L N Y. 2013. The Brazilian disc test for rock mechanics applications: review and new insights[J]. Rock Mechanics and Rock Engineering, 46 (2): 269-287. doi: 10.1007/s00603-012-0257-7
    Li L R. 2017. Dominant frequencies and their mechanical mechanism of acoustic emissions in rock failures[D]. Chengdu: Sichuan University.
    Liao Z, Zhu J, Tang C. 2019. Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests[J]. International Journal of Rock Mechanics and Mining Sciences, 115 : 21-32. doi: 10.1016/j.ijrmms.2019.01.007
    Martin C D. 1993. The strength of massive Lac du Bonnet granite around underground opening[D]. Canada: University of Manitoba.
    Meng L C, Xu R C, Wang A M, et al. 2020. Characteristics of strength and acoustic emission of granite and marble under uniaxial compression[J]. Journal of Engineering Geology, 28 (6): 1178-1185.
    Peng J. 2015. Modelling of strength and deformation behaviors of brittle rocks[D]. Wuhan: Wuhan University.
    Perras M A, Diederichs M S. 2014. A review of the tensile strength of rock: concepts and testing[J]. Geotechnical and Geological Engineering, 32 (2): 525-546. doi: 10.1007/s10706-014-9732-0
    Rajabzadeh M, Moosavinasab Z, Rakhshandehroo G. 2012. Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks[J]. Rock Mechanics and Rock Engineering, 45(1): 113-122. doi: 10.1007/s00603-011-0169-y
    Sha P, Yang D L, Wu Y X, et al. 2021. Progressive failure characteristics and energy evolution of granite in Brazilian disc tests[J]. Journal of Engineering Geology, 29 (5): 1258-1266.
    Shakoor A, Barefield E H. 2009. Relationship between unconfined compressive strength and degree of saturation for selected sandstones[J]. Environmental & Engineering Geoscience, 15 (1): 29-40.
    Sheorey P, Biswas A, Choubey V. 1989. An empirical failure criterion for rocks and jointed rock masses[J]. Engineering Geology, 26 (2): 141-159. doi: 10.1016/0013-7952(89)90003-3
    Tham L, Liu H, Tang C, et al. 2005. On tension failure of 2-D rock specimens and associated acoustic emission[J]. Rock Mechanics and Rock Engineering, 38 : 1-19. doi: 10.1007/s00603-004-0031-6
    Vutukuri V S, Lama R D, Saluja S S. 1974. Handbook on mechanical properties of rocks, vol I—testing techniques and results[M]. Trans Tech Publications: 280.
    Xu J, Geng J B, Peng S J, et al. 2015. Acoustic emission characteristics of coal and gas outburst under different moisture contents[J]. Journal of China Coal Society, 40 (5): 1047-1054.
    Zhang X P, Lü G G, Zhang Q, et al. 2020. Uniaxial compression test for three stress thresholds of siliceous siltstone[J]. Journal of Engineering Geology, 28 (3): 441-449.
    Zhou C Y, Liang N, Liu Z. 2020. Multifractal characteristics of pore structure of red beds soft rock at different saturations[J]. Journal of Engineering Geology, 28 (1): 1-9.
    Zhou H, Meng F Z, Lu J J, et al. 2014. Discussion on methods for calculating crack initiation strength and crack damage strength for hard rock[J]. Rock and Soil Mechanics, 35 (4): 913-918.
    Zhu J, Deng J H, Chen F, et al. 2020. Water saturation effects on mechanical and fracture behavior of marble[J]. International Journal of Geomechanics, 20(10): 04020191. doi: 10.1061/(ASCE)GM.1943-5622.0001825
    Zhu J, Deng J H, Huang Y M, et al. 2019. Experimental study on the characteristic strength of saturated marble[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (6): 1129-1138.
    邓建辉, 李林芮, 陈菲, 等. 2018. 大理岩破坏的声发射双主频特征及其机制初探[J]. 工程科学与技术, 50 (5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm
    贾雪娜. 2013. 应变岩爆实验的声发射本征频谱特征[D]. 北京: 中国矿业大学(北京).
    李林芮. 2017. 岩石破坏的声发射主频特征与力学机制[D]. 成都: 四川大学.
    孟令超, 徐荣超, 王安明, 等. 2020. 单轴压缩下两种脆性岩石强度及声发射特性的试验研究[J]. 工程地质学报, 28 (6): 1178-1185. doi: 10.13544/j.cnki.jeg.2019-562
    彭俊. 2015. 脆性岩石强度与变形特性研究[D]. 武汉: 武汉大学.
    沙鹏, 杨丹莲, 邬一鑫, 等. 2021. 花岗岩巴西劈裂渐进破坏特征与能量演化研究[J]. 工程地质学报, 29 (5): 1258-1266. doi: 10.13544/j.cnki.jeg.2021-0530
    许江, 耿加波, 彭守建, 等. 2005. 不同含水率条件下煤与瓦斯突出的声发射特性[J]. 煤炭学报, 40 (5): 1047-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505012.htm
    张晓平, 吕根根, 张旗, 等. 2020. 单轴压缩条件下硅质粉砂岩应力阈值研究[J]. 工程地质学报, 28 (3): 441-449. doi: 10.13544/j.cnki.jeg.2019-085
    周翠英, 梁宁, 刘镇. 2020. 红层软岩遇水作用的孔隙结构多重分形特征[J]. 工程地质学报, 28 (1): 1-9. doi: 10.13544/j.cnki.jeg.2018-337
    周辉, 孟凡震, 卢景景, 等. 2014. 硬岩裂纹起裂强度和损伤强度取值方法探讨[J]. 岩土力学, 35 (4): 913-918. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404001.htm
    朱俊, 邓建辉, 黄弈茗, 等. 2019. 饱和大理岩特征强度试验研究[J]. 岩石力学与工程学报, 38 (6): 1129-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-05-06
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回