考虑堆积区宽度影响的滑坡碎屑流运动与堆积过程物理模型试验研究

王贵洲 龚文平 邢磊 李昺

王贵洲, 龚文平, 邢磊, 等. 2023. 考虑堆积区宽度影响的滑坡碎屑流运动与堆积过程物理模型试验研究[J]. 工程地质学报, 31(5): 1637-1647. doi: 10.13544/j.cnki.jeg.2022-0117
引用本文: 王贵洲, 龚文平, 邢磊, 等. 2023. 考虑堆积区宽度影响的滑坡碎屑流运动与堆积过程物理模型试验研究[J]. 工程地质学报, 31(5): 1637-1647. doi: 10.13544/j.cnki.jeg.2022-0117
Wang Guizhou, Gong Wenping, Xing Lei, et al. 2023. Model tests of run-out and deposition process of landslide debris considering influence of depositing zone width[J]. Journal of Engineering Geology, 31(5): 1637-1647. doi: 10.13544/j.cnki.jeg.2022-0117
Citation: Wang Guizhou, Gong Wenping, Xing Lei, et al. 2023. Model tests of run-out and deposition process of landslide debris considering influence of depositing zone width[J]. Journal of Engineering Geology, 31(5): 1637-1647. doi: 10.13544/j.cnki.jeg.2022-0117

考虑堆积区宽度影响的滑坡碎屑流运动与堆积过程物理模型试验研究

doi: 10.13544/j.cnki.jeg.2022-0117
基金项目: 

国家自然科学基金项目 41977242

国家自然科学基金项目 42090055

详细信息
    作者简介:

    王贵洲(1996-),男,硕士生,主要从事滑坡运动和堆积过程模型试验研究. E-mail:wangguizhou@cug.edu.cn

    通讯作者:

    龚文平(1989-),男,博士,教授,博士生导师,主要从事地质模型不确定性模拟、工程地质灾害风险评估等方面的科研与教学工作. E-mail:wenpinggong@cug.edu.cn

  • 中图分类号: P642.22

MODEL TESTS OF RUN-OUT AND DEPOSITION PROCESS OF LANDSLIDE DEBRIS CONSIDERING INFLUENCE OF DEPOSITING ZONE WIDTH

Funds: 

the National Natural Science Foundation of China 41977242

the National Natural Science Foundation of China 42090055

  • 摘要: 堆积区宽度会显著影响滑坡碎屑流运动与堆积过程,而目前该方面研究却相对较少。本文设计了一种水平滑段宽度可变的物理模型试验装置,在此基础上开展了一系列物理模型试验。试验获取了不同宽度水平滑段条件下颗粒流运动与堆积过程的图像和数据,分析了颗粒流速度分布和堆积特征,进一步结合数值模拟探讨了颗粒流运动机制与堆积特征成因。结果表明:颗粒流在倾斜滑段随运动距离增加逐渐离散且离散范围也逐渐增大;颗粒流在水平滑段的运动速度随水平滑段宽度增加逐渐减小,运动速度方向发生偏移且随水平滑段宽度增加更加显著;颗粒流在水平滑段的堆积长度随水平滑段宽度增加逐渐减小,堆积宽度逐渐增加,堆积面积先减小后增加;数值模拟结果表明:碰撞是颗粒间主要能量传递形式,摩擦是主要耗能形式,随着水平滑段宽度增加,颗粒流在水平滑段颗粒间的碰撞次数逐渐减少,颗粒向两侧滑动展布,摩擦耗能使得颗粒流堆积宽度增加而堆积长度减小。
  • 图  1  物理模型试验装置照片

    a. 物理模型试验装置整体图; b. 水平滑段宽度调整示意图

    Figure  1.  Photo of the designed model test system

    图  2  碎屑流模拟材料(卵石)

    a. 卵石筛分; b. 卵石染色

    Figure  2.  Modelling materials of lockslide-avalanche(pebble)

    图  3  颗粒流堆积物三维模型倾斜摄影测量重建示意图

    Figure  3.  Schematic diagram of 3D model reconstruction of the deposition of granular flow by oblique photogrammetry

    图  4  倾斜滑段颗粒流运动过程分析

    a. 颗粒流运动过程俯视图; b. 颗粒流运动速度云图

    Figure  4.  Analysis of the run-out processes of granular flow on the inclined sliding path

    图  5  倾斜滑段颗粒流运动特征分析

    a. 颗粒流间隔0.3 m位置处速度变化图; b. 颗粒流间隔0.3 m位置处Fr变化箱型图

    Figure  5.  Analysis of the run-out behaviors of granular flow on the inclined sliding path

    图  6  不同宽度水平滑段条件下颗粒流运动过程分析

    Figure  6.  Analysis of the run-out processes of granular flow with different widths of depositing zone

    图  7  不同宽度水平滑段条件下颗粒流运动特征分布特征

    a. 1.8 s颗粒流纵向平均速度分布特征; b. 1.9 s颗粒流纵向平均速度分布特征; c. 1.8 s颗粒流横向平均速度分布特征; d. 1.9 s颗粒流横向平均速度分布特征

    Figure  7.  Analysis of the run-out behaviors of granular flow with different widths of depositing zone

    图  8  不同宽度水平滑段条件下颗粒流堆积形态俯视图

    Figure  8.  The vertical view of the granular flow deposit shapes with different widths of depositing zone

    图  9  不同宽度水平滑段条件下颗粒流堆积特征图

    a. 整体颗粒流堆积特征; b. 红色(前部)颗粒流堆积特征; c. 黄色(中部)颗粒流堆积特征; d. 蓝色(后部)颗粒流堆积特征

    Figure  9.  Deposit characteristics of granular flow with different widths of depositing zone

    图  10  不同宽度水平滑段条件下颗粒流堆积面积变化

    Figure  10.  Changes of the deposition area of granular flow with different widths of depositing zone

    图  11  颗粒流倾斜滑段运动过程与水平滑段堆积特征数值模拟结果与试验结果对比分析

    a. 颗粒流运动特性数值模拟结果与试验结果对比; b. 颗粒流堆积特性数值模拟结果与试验结果对比

    Figure  11.  Comparisons of the run-out process on the inclined sliding path and the deposit characteristics of l granular flow in depositing zone between numerical simulation results and experimental results

    图  12  不同宽度水平滑段条件下监测区碰撞次数与颗粒流能量损失率

    a. 不同宽度水平滑段条件下监测区碰撞次数; b. 不同宽度水平滑段条件下颗粒流能量损失率

    Figure  12.  Collision frequency of sliding materials and energy loss rate of granular flow with different widths of depositing zone

    图  13  水平滑段宽度为0.8 m与1.2 m条件颗粒流运动特征与堆积形态

    a. 水平滑段宽度为0.8 m与1.2 m条件下颗粒流运动时间为2.0 s时的速度特征; b. 水平滑段宽度为0.8 m与1.2 m条件下颗粒流最终堆积形态

    Figure  13.  Velocity characteristics and deposit shape of granular flow with widths of 0.8 m and 1.2 m of depositing zone

    表  1  卵石粒径与质量配比

    Table  1.   Pebble diameter and related quality ratio

    卵石粒径/cm 1~1.5 1.5~2 2~2.5 2.5~3
    质量配比 20% 30% 30% 20%
    下载: 导出CSV

    表  2  物理模型试验工况

    Table  2.   Testing programs adopted in this study

    工况 A B C D E
    水平滑段宽度/m 0.8 0.9 1.0 1.1 1.2
    下载: 导出CSV

    表  3  MatDEM数值模型颗粒力学参数取值

    Table  3.   Properties of granular adopted in the built MatDEM model

    材料参数 取值 单位
    弹性模量 2.65 GPa
    泊松比 0.2
    抗拉强度 3.65 MPa
    抗压强度 40 MPa
    内摩擦系数 0.5
    密度 2615 kg·m-3
    下载: 导出CSV
  • Bandara S, Ferrari A, Laloui L. 2016. Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 40 (9): 1358-1380. doi: 10.1002/nag.2499
    Bi Y Z, He S M, Li X P, et al. 2016. Kinetic mechanism of mixed particles under constraint conditions[J]. Chinese Journal of Geotechnical Engineering, 38 (3): 529-536.
    Cagnoli B, Romano G P. 2010. Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: Experimental results[J]. Journal of Volcanology and Geothermal Research, 196(3-4): 236-244. doi: 10.1016/j.jvolgeores.2010.08.002
    Chen Z, Rickenmann D, Zhang Y, et al. 2021. Effects of obstacle's curvature on shock dynamics of gravity-driven granular flows impacting a circular cylinder[J]. Engineering Geology, 293: 106343. doi: 10.1016/j.enggeo.2021.106343
    Cheng Q G, Zhang Z Y, Huang R Q. 2007. Study on dynamics of rock avalances: state of the art report[J]. Journal of Mountain Science, 25 (1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007
    Domnik B, Pudasaini S P. 2012. Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 173 : 72-86.
    Dufresne A, Davies T R. 2009. Longitudinal ridges in mass movement deposits[J]. Geomorphology, 105(3-4): 171-181. doi: 10.1016/j.geomorph.2008.09.009
    Dufresne A. 2012. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 37 (14): 1527-1541. doi: 10.1002/esp.3296
    Fan X Y, Tian S J, Zhang Y Y. 2016. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation[J]. Journal of Mountain Science, 13 (2): 234-245. doi: 10.1007/s11629-014-3396-3
    Frank M. 1999. White, fluid mechanics. [M]. 4th ed. New York: McGraw-Hill: 294.
    Ge Y, Zhou T, Tang H, et al. 2020. Influence of the impact angle on the motion and deposition of granular flows[J]. Engineering Geology, 275: 105746. doi: 10.1016/j.enggeo.2020.105746
    Hao M H, Xu Q, Yang X G, et al. 2015. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (3): 472-479.
    Heim A. 1882. Ueberden bergsturz von elm[J]. Zeitschrift Der Deutschen Geologischen Gesellschaft: 435-438.
    Huang R Q. 2009. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
    Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11 (2): 167-194. doi: 10.1007/s10346-013-0436-y
    Iverson R M, Logan M, Denlinger R P. 2004. Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests[J]. Journal of Geophysical Research: Earth Surface, 109: F01015.
    Jiang Y J, Towhata I. 2013. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics and Rock Engineering, 46 (4): 713-729. doi: 10.1007/s00603-012-0293-3
    Jiang Y J, Fan X Y, Su L J, et al. 2021. Experimental validation of a new semi-empirical impact force model of the dry granular flow impact against a rigid barrier[J]. Landslides, 18 (4): 1387-1402. doi: 10.1007/s10346-020-01555-8
    Lai Q Y, Zhao J J, Huang R Q, et al. 2022. Formation mechanism and evolution process of the Chada rock avalanche in Southeast Tibet, China[J]. Landslides, 19 (2): 331-349. doi: 10.1007/s10346-021-01793-4
    Lei X S, Zhu D Y, Liu C, et al. 2017. Model test study of the effect of slope angle and chute width on landslide[J]. Rock and Soil Mechanics, 38 (5): 1281-1288.
    Li B, Gong W, Tang H, et al. 2021. Probabilistic analysis of a discrete element modelling of the runout behavior of the Jiweishan landslide[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 45 (8): 1120-1138. doi: 10.1002/nag.3199
    Li K, Wang Y F, Lin Q W, et al. 2021. Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics[J]. Landslides, 18 (5): 1779-1799. doi: 10.1007/s10346-020-01607-z
    Li K, Wang Y, Cheng Q, et al. 2022. Insight into granular flow dynamics relying on basal stress measurements: from experimental flume tests[J]. Journal of Geophysical Research: Solid Earth, e2021JB022905.
    Li K, Cheng Q G, Lin Q W, et al. 2022. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 47 (3): 893-912.
    Li K, Wang Y F, Cheng Q G, et al. 2021. Effects of fractal particle size distribution on segregation of granular flows[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (2): 330-343.
    Li X, Zhao J. 2018. Dam-break of mixtures consisting of non-newtonian liquids and granular particles[J]. Powder Technology, 338 : 493-505. doi: 10.1016/j.powtec.2018.07.021
    Liang H, He S, Lei X, et al. 2019. Dynamic process simulation of construction solid waste(CSW)landfill landslide based on SPH considering dilatancy effects[J]. Bulletin of Engineering Geology and the Environment, 78 (2): 763-777. doi: 10.1007/s10064-017-1129-x
    Lin Q W, Cheng Q G, Li K, et al. 2023. Review on fragmentation-related dynamics of rock avalanches[J]. Journal of Engineering Geology, 31 (3): 815-829.
    Liu C, Pollard D D, Shi B. 2013. Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals[J]. Journal of Geophysical Research: Solid Earth, 118 (1): 71-82. doi: 10.1029/2012JB009615
    Long Y M, Song Z, Wang Y F, et al. 2022. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 49 (1): 126-136.
    Manzella I, Labiouse V. 2013. Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides, 10 (1): 23-36. doi: 10.1007/s10346-011-0313-5
    Mao J, Liu X, Zhang C, et al. 2021. Runout prediction and deposit characteristics investigation by the distance potential-based discrete element method: the 2018 Baige landslides, Jinsha River, China[J]. Landslides, 18 (1): 235-249. doi: 10.1007/s10346-020-01501-8
    Okura Y, Kitahara H, Sammori T, et al. 2000. The effects of rockfall volume on runout distance[J]. Engineering Geology, 58 (2): 109-124. doi: 10.1016/S0013-7952(00)00049-1
    Thielicke W, Stamhuis E. 2014. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2 (1): 1-10. doi: 10.5334/jors.ai
    Valentino R, Barla G, Montrasio L. 2008. Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests[J]. Rock Mechanics and Rock Engineering, 41 (1): 153-177. doi: 10.1007/s00603-006-0126-3
    Wang Y F, Cheng Q G, Lin Q W, et al. 2018. Insights into the kinematics and dynamics of the Luanshibao rock avalanche(Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology, 317 : 170-183. doi: 10.1016/j.geomorph.2018.05.025
    Wang Y F, Cheng Q G, Shi A W, et al. 2019. Sedimentary deformation structures in the nyixoi chongco rock avalanche: implications on rock avalanche transport mechanisms[J]. Landslides, 16 (3): 523-532. doi: 10.1007/s10346-018-1117-7
    Wang Y F, Xu Q, Cheng Q G, et al. 2016. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography: experimental study[J]. Rock Mechanics and Rock Engineering, 49 (11): 4349-4370. doi: 10.1007/s00603-016-1052-7
    Wang Y F, Lin Q W, Li K, et al. 2021. Review on rock avalance dynamics[J]. Journal of Earth Sciences and Environment, 43 (1): 164-181.
    Wu S R, Wang T, Shi L, et al. 2010. Study on catastrophic landslides triggered by 2008 great Wenchuan earthquake, Sichuan, China[J]. Journal of Engineering Geology, 18 (2): 145-159. doi: 10.3969/j.issn.1004-9665.2010.02.001
    Yang H, Cheng J. 2017. Experimental investigation on the interaction between the rapid sliding body and exposed element[J]. Environmental Earth Sciences, 76(6): 258. doi: 10.1007/s12665-017-6565-1
    Zhang M, Yin Y P, Wu S R, et al. 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18 (6): 805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001
    Zhang Z D, Fan X Y, Jiang Y J. 2021. Particle sequence distribution and the effect of particle size on the impact effect in a fluidized landslide-debris flow[J]. Hydrogeology & Engineering Geology, 48 (1): 49-59.
    Zhao B, Zhao X, Zeng L, et al. 2021. The mechanisms of complex morphological features of a prehistorical landslide on the eastern margin of the Qinghai-Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment, 80 (4): 3423-3437. doi: 10.1007/s10064-021-02114-8
    Zhao Y J, Gong J C, Du W J, et al. 2015. UAV imagery data processing for emergency response based on PhotoScan Pro[J]. Remote Sensing for Land & Resource, 27 (4): 179-182.
    Zheng G, Xu Q, Ju Y Z, et al. 2018 The Pusacun rock avalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: characteristic and failure mechanism[J]. Journal of Engineering Geology, 26 (1): 223-240.
    Zhou J W, Cui P, Hao M H. 2016. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 13 (1): 39-54. doi: 10.1007/s10346-014-0553-2
    毕钰璋, 何思明, 李新坡, 等. 2016. 约束条件下粗细混合颗粒动力机理分析[J]. 岩土工程学报, 38 (3): 529-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603020.htm
    程谦恭, 张倬元, 黄润秋. 2007. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 25 (1): 72-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200701007.htm
    郝明辉, 许强, 杨兴国, 等. 2015. 高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 34 (3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm
    黄润秋. 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 28 (6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
    雷先顺, 朱大勇, 刘诚, 等. 2017. 考虑滑道坡度和宽度的滑坡模型试验研究[J]. 岩土力学, 38 (5): 1281-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705008.htm
    李坤, 程谦恭, 林棋文, 等. 2022. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 47 (3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
    李坤, 王玉峰, 程谦恭, 等. 2021. 分形粒径分布对颗粒流粒径分选的影响规律[J]. 岩石力学与工程学报, 40 (2): 330-343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102009.htm
    林棋文, 程谦恭, 李坤, 等. 2023. 高速远程滑坡碎屑化运动机理研究综述[J]. 工程地质学报, 31 (3): 815-829. doi: 10.13544/j.cnki.jeg.2021-0035
    龙艳梅, 宋章, 王玉峰, 等. 2022. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质, 49 (1): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202201015.htm
    王玉峰, 林棋文, 李坤, 等. 2021. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 43 (1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm
    吴树仁, 王涛, 石玲, 等. 2010.2008汶川大地震极端滑坡事件初步研究[J]. 工程地质学报, 18 (2): 145-159. http://www.gcdz.org/article/id/8527
    张明, 殷跃平, 吴树仁, 等. 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 18 (6): 805-817. http://www.gcdz.org/article/id/8730
    张志东, 樊晓一, 姜元俊. 2021. 滑源区粒序分布及颗粒粒径对碎屑流冲击作用的影响研究[J]. 水文地质工程地质, 48 (1): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202101007.htm
    赵云景, 龚绪才, 杜文俊, 等. 2015. PhotoScan Pro软件在无人机应急航摄中的应用[J]. 国土资源遥感, 27 (4): 179-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201504028.htm
    郑光, 许强, 巨袁臻, 等. 2018.2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 26 (1): 223-240. doi: 10.13544/j.cnki.jeg.2018.01.023
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  12
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-07-09
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回