MODEL TESTS OF RUN-OUT AND DEPOSITION PROCESS OF LANDSLIDE DEBRIS CONSIDERING INFLUENCE OF DEPOSITING ZONE WIDTH
-
摘要: 堆积区宽度会显著影响滑坡碎屑流运动与堆积过程,而目前该方面研究却相对较少。本文设计了一种水平滑段宽度可变的物理模型试验装置,在此基础上开展了一系列物理模型试验。试验获取了不同宽度水平滑段条件下颗粒流运动与堆积过程的图像和数据,分析了颗粒流速度分布和堆积特征,进一步结合数值模拟探讨了颗粒流运动机制与堆积特征成因。结果表明:颗粒流在倾斜滑段随运动距离增加逐渐离散且离散范围也逐渐增大;颗粒流在水平滑段的运动速度随水平滑段宽度增加逐渐减小,运动速度方向发生偏移且随水平滑段宽度增加更加显著;颗粒流在水平滑段的堆积长度随水平滑段宽度增加逐渐减小,堆积宽度逐渐增加,堆积面积先减小后增加;数值模拟结果表明:碰撞是颗粒间主要能量传递形式,摩擦是主要耗能形式,随着水平滑段宽度增加,颗粒流在水平滑段颗粒间的碰撞次数逐渐减少,颗粒向两侧滑动展布,摩擦耗能使得颗粒流堆积宽度增加而堆积长度减小。Abstract: It is noted that the run-out and deposition processes of rockslide-avalanche can be greatly affected by the width of the depositing zone. However, there are limited studies regarding the influence of the width of the depositing zone on the run-out and deposition processes of rockslide-avalanche in literature. In this study, a model test system with an easily adjustable width of the depositing zone is designed and used for a series of model tests. During the tests, the images and data of the run-out process and deposition behaviors, with different widths of depositing zone, are collected and used for deriving the velocity and deposition behaviors of the granular flow. Further, numerical simulations are undertaken to reveal the underlying mechanisms of the run-out and deposition behaviors. On the basis of the obtained results, the following conclusions are drawn. The divergence of the sliding materials on its inclined sliding path tends to increase with the sliding distance. The sliding velocity of the materials in the depositing zone decreases with the width of the depositing zone, the sliding direction of the materials changes in the depositing zone and this change becomes more distinct with the increase of the width of the depositing zone. The increase of the width of the depositing zone tends to lead to the decrease of the length of the granular flow deposition in the depositing zone while the increase of the width of the granular flow deposition. The area of the granular flow deposition decreases first and then increases with the width of the depositing zone. Numerical simulations indicate that collision is the main type of energy transfers among the sliding martials while friction is the main type of energy consumption. With the increase of the width of the depositing zone, the frequency of collisions decreases and the sliding materials tends to move towards two sides. The energy consumption induced by friction could lead to the increase of the width of the granular flow deposition while the decrease of the deposition length.
-
Key words:
- Model test /
- Width of depositing zone /
- Granular flow /
- Run-out process /
- Deposition behaviors /
- Numerical simulation
-
表 1 卵石粒径与质量配比
Table 1. Pebble diameter and related quality ratio
卵石粒径/cm 1~1.5 1.5~2 2~2.5 2.5~3 质量配比 20% 30% 30% 20% 表 2 物理模型试验工况
Table 2. Testing programs adopted in this study
工况 A B C D E 水平滑段宽度/m 0.8 0.9 1.0 1.1 1.2 表 3 MatDEM数值模型颗粒力学参数取值
Table 3. Properties of granular adopted in the built MatDEM model
材料参数 取值 单位 弹性模量 2.65 GPa 泊松比 0.2 抗拉强度 3.65 MPa 抗压强度 40 MPa 内摩擦系数 0.5 密度 2615 kg·m-3 -
Bandara S, Ferrari A, Laloui L. 2016. Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 40 (9): 1358-1380. doi: 10.1002/nag.2499 Bi Y Z, He S M, Li X P, et al. 2016. Kinetic mechanism of mixed particles under constraint conditions[J]. Chinese Journal of Geotechnical Engineering, 38 (3): 529-536. Cagnoli B, Romano G P. 2010. Pressures at the base of dry flows of angular rock fragments as a function of grain size and flow volume: Experimental results[J]. Journal of Volcanology and Geothermal Research, 196(3-4): 236-244. doi: 10.1016/j.jvolgeores.2010.08.002 Chen Z, Rickenmann D, Zhang Y, et al. 2021. Effects of obstacle's curvature on shock dynamics of gravity-driven granular flows impacting a circular cylinder[J]. Engineering Geology, 293: 106343. doi: 10.1016/j.enggeo.2021.106343 Cheng Q G, Zhang Z Y, Huang R Q. 2007. Study on dynamics of rock avalances: state of the art report[J]. Journal of Mountain Science, 25 (1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007 Domnik B, Pudasaini S P. 2012. Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 173 : 72-86. Dufresne A, Davies T R. 2009. Longitudinal ridges in mass movement deposits[J]. Geomorphology, 105(3-4): 171-181. doi: 10.1016/j.geomorph.2008.09.009 Dufresne A. 2012. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 37 (14): 1527-1541. doi: 10.1002/esp.3296 Fan X Y, Tian S J, Zhang Y Y. 2016. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation[J]. Journal of Mountain Science, 13 (2): 234-245. doi: 10.1007/s11629-014-3396-3 Frank M. 1999. White, fluid mechanics. [M]. 4th ed. New York: McGraw-Hill: 294. Ge Y, Zhou T, Tang H, et al. 2020. Influence of the impact angle on the motion and deposition of granular flows[J]. Engineering Geology, 275: 105746. doi: 10.1016/j.enggeo.2020.105746 Hao M H, Xu Q, Yang X G, et al. 2015. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (3): 472-479. Heim A. 1882. Ueberden bergsturz von elm[J]. Zeitschrift Der Deutschen Geologischen Gesellschaft: 435-438. Huang R Q. 2009. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021 Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update[J]. Landslides, 11 (2): 167-194. doi: 10.1007/s10346-013-0436-y Iverson R M, Logan M, Denlinger R P. 2004. Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests[J]. Journal of Geophysical Research: Earth Surface, 109: F01015. Jiang Y J, Towhata I. 2013. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics and Rock Engineering, 46 (4): 713-729. doi: 10.1007/s00603-012-0293-3 Jiang Y J, Fan X Y, Su L J, et al. 2021. Experimental validation of a new semi-empirical impact force model of the dry granular flow impact against a rigid barrier[J]. Landslides, 18 (4): 1387-1402. doi: 10.1007/s10346-020-01555-8 Lai Q Y, Zhao J J, Huang R Q, et al. 2022. Formation mechanism and evolution process of the Chada rock avalanche in Southeast Tibet, China[J]. Landslides, 19 (2): 331-349. doi: 10.1007/s10346-021-01793-4 Lei X S, Zhu D Y, Liu C, et al. 2017. Model test study of the effect of slope angle and chute width on landslide[J]. Rock and Soil Mechanics, 38 (5): 1281-1288. Li B, Gong W, Tang H, et al. 2021. Probabilistic analysis of a discrete element modelling of the runout behavior of the Jiweishan landslide[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 45 (8): 1120-1138. doi: 10.1002/nag.3199 Li K, Wang Y F, Lin Q W, et al. 2021. Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics[J]. Landslides, 18 (5): 1779-1799. doi: 10.1007/s10346-020-01607-z Li K, Wang Y, Cheng Q, et al. 2022. Insight into granular flow dynamics relying on basal stress measurements: from experimental flume tests[J]. Journal of Geophysical Research: Solid Earth, e2021JB022905. Li K, Cheng Q G, Lin Q W, et al. 2022. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 47 (3): 893-912. Li K, Wang Y F, Cheng Q G, et al. 2021. Effects of fractal particle size distribution on segregation of granular flows[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (2): 330-343. Li X, Zhao J. 2018. Dam-break of mixtures consisting of non-newtonian liquids and granular particles[J]. Powder Technology, 338 : 493-505. doi: 10.1016/j.powtec.2018.07.021 Liang H, He S, Lei X, et al. 2019. Dynamic process simulation of construction solid waste(CSW)landfill landslide based on SPH considering dilatancy effects[J]. Bulletin of Engineering Geology and the Environment, 78 (2): 763-777. doi: 10.1007/s10064-017-1129-x Lin Q W, Cheng Q G, Li K, et al. 2023. Review on fragmentation-related dynamics of rock avalanches[J]. Journal of Engineering Geology, 31 (3): 815-829. Liu C, Pollard D D, Shi B. 2013. Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals[J]. Journal of Geophysical Research: Solid Earth, 118 (1): 71-82. doi: 10.1029/2012JB009615 Long Y M, Song Z, Wang Y F, et al. 2022. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 49 (1): 126-136. Manzella I, Labiouse V. 2013. Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides, 10 (1): 23-36. doi: 10.1007/s10346-011-0313-5 Mao J, Liu X, Zhang C, et al. 2021. Runout prediction and deposit characteristics investigation by the distance potential-based discrete element method: the 2018 Baige landslides, Jinsha River, China[J]. Landslides, 18 (1): 235-249. doi: 10.1007/s10346-020-01501-8 Okura Y, Kitahara H, Sammori T, et al. 2000. The effects of rockfall volume on runout distance[J]. Engineering Geology, 58 (2): 109-124. doi: 10.1016/S0013-7952(00)00049-1 Thielicke W, Stamhuis E. 2014. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2 (1): 1-10. doi: 10.5334/jors.ai Valentino R, Barla G, Montrasio L. 2008. Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests[J]. Rock Mechanics and Rock Engineering, 41 (1): 153-177. doi: 10.1007/s00603-006-0126-3 Wang Y F, Cheng Q G, Lin Q W, et al. 2018. Insights into the kinematics and dynamics of the Luanshibao rock avalanche(Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology, 317 : 170-183. doi: 10.1016/j.geomorph.2018.05.025 Wang Y F, Cheng Q G, Shi A W, et al. 2019. Sedimentary deformation structures in the nyixoi chongco rock avalanche: implications on rock avalanche transport mechanisms[J]. Landslides, 16 (3): 523-532. doi: 10.1007/s10346-018-1117-7 Wang Y F, Xu Q, Cheng Q G, et al. 2016. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography: experimental study[J]. Rock Mechanics and Rock Engineering, 49 (11): 4349-4370. doi: 10.1007/s00603-016-1052-7 Wang Y F, Lin Q W, Li K, et al. 2021. Review on rock avalance dynamics[J]. Journal of Earth Sciences and Environment, 43 (1): 164-181. Wu S R, Wang T, Shi L, et al. 2010. Study on catastrophic landslides triggered by 2008 great Wenchuan earthquake, Sichuan, China[J]. Journal of Engineering Geology, 18 (2): 145-159. doi: 10.3969/j.issn.1004-9665.2010.02.001 Yang H, Cheng J. 2017. Experimental investigation on the interaction between the rapid sliding body and exposed element[J]. Environmental Earth Sciences, 76(6): 258. doi: 10.1007/s12665-017-6565-1 Zhang M, Yin Y P, Wu S R, et al. 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18 (6): 805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001 Zhang Z D, Fan X Y, Jiang Y J. 2021. Particle sequence distribution and the effect of particle size on the impact effect in a fluidized landslide-debris flow[J]. Hydrogeology & Engineering Geology, 48 (1): 49-59. Zhao B, Zhao X, Zeng L, et al. 2021. The mechanisms of complex morphological features of a prehistorical landslide on the eastern margin of the Qinghai-Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment, 80 (4): 3423-3437. doi: 10.1007/s10064-021-02114-8 Zhao Y J, Gong J C, Du W J, et al. 2015. UAV imagery data processing for emergency response based on PhotoScan Pro[J]. Remote Sensing for Land & Resource, 27 (4): 179-182. Zheng G, Xu Q, Ju Y Z, et al. 2018 The Pusacun rock avalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: characteristic and failure mechanism[J]. Journal of Engineering Geology, 26 (1): 223-240. Zhou J W, Cui P, Hao M H. 2016. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 13 (1): 39-54. doi: 10.1007/s10346-014-0553-2 毕钰璋, 何思明, 李新坡, 等. 2016. 约束条件下粗细混合颗粒动力机理分析[J]. 岩土工程学报, 38 (3): 529-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603020.htm 程谦恭, 张倬元, 黄润秋. 2007. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 25 (1): 72-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200701007.htm 郝明辉, 许强, 杨兴国, 等. 2015. 高速滑坡-碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 34 (3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm 黄润秋. 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 28 (6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021 雷先顺, 朱大勇, 刘诚, 等. 2017. 考虑滑道坡度和宽度的滑坡模型试验研究[J]. 岩土力学, 38 (5): 1281-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705008.htm 李坤, 程谦恭, 林棋文, 等. 2022. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 47 (3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm 李坤, 王玉峰, 程谦恭, 等. 2021. 分形粒径分布对颗粒流粒径分选的影响规律[J]. 岩石力学与工程学报, 40 (2): 330-343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102009.htm 林棋文, 程谦恭, 李坤, 等. 2023. 高速远程滑坡碎屑化运动机理研究综述[J]. 工程地质学报, 31 (3): 815-829. doi: 10.13544/j.cnki.jeg.2021-0035 龙艳梅, 宋章, 王玉峰, 等. 2022. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质, 49 (1): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202201015.htm 王玉峰, 林棋文, 李坤, 等. 2021. 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 43 (1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm 吴树仁, 王涛, 石玲, 等. 2010.2008汶川大地震极端滑坡事件初步研究[J]. 工程地质学报, 18 (2): 145-159. http://www.gcdz.org/article/id/8527 张明, 殷跃平, 吴树仁, 等. 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 18 (6): 805-817. http://www.gcdz.org/article/id/8730 张志东, 樊晓一, 姜元俊. 2021. 滑源区粒序分布及颗粒粒径对碎屑流冲击作用的影响研究[J]. 水文地质工程地质, 48 (1): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202101007.htm 赵云景, 龚绪才, 杜文俊, 等. 2015. PhotoScan Pro软件在无人机应急航摄中的应用[J]. 国土资源遥感, 27 (4): 179-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201504028.htm 郑光, 许强, 巨袁臻, 等. 2018.2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 26 (1): 223-240. doi: 10.13544/j.cnki.jeg.2018.01.023 -