HAZARD IDENTIFICATION AND RISK ASSESSMENT OF WATER INRUSH IN DEEP MINING OF METAL MINES: A CASE STUDY OF MAOPING LEAD-ZINC MINE IN NORTHEAST YUNNAN, CHINA
-
摘要: 金属矿山进入深部开采后,面临着“三高一扰动”的复杂地质采矿条件,极易诱发突水灾害。本文依托滇东北毛坪铅锌矿,基于水文地质结构研究,对其突水致灾危险源进行了系统辨识和突水危险性评价,确定了深部开采过程中的突水致灾危险源管控措施。根据毛坪铅锌矿的地质、构造与水文地质条件,划分了两类水文地质结构类型,即背斜西翼强富水含水层侧向充水-陡倾型与背斜东翼中等含水岩溶顶底板充水-平缓型。从构造发育、含/隔水层、开采扰动3个方面,对毛坪铅锌矿深部开采的突水危险源进行辨识,建立了层次分析评价模型,获得了主要开采中段的突水危险性分区,划分出了安全区、相对安全区、过渡区、相对危险区、危险区。结果表明,矿区倒三角锥型的疏排水中心为突水危险性较小的区域,即安全区;北部为矿区的二叠系栖霞茅口组灰岩岩溶裂隙强富水含水层是矿区的突水危险性最大的区域,即危险区。从490 m和310 m中段的分区可见,危险区和相对危险区呈北东、北西方向的条带状,和主要的导水构造的发育方向一致。此项研究,为矿山建立“探、防、堵、疏、监”五位一体的综合防治水技术体系提供了科学依据。Abstract: After it enters deep mining, the metal mine will face the complex geological conditions of "three highs and one disturbance". The disturbance of ore body mining can easily induce water inrush disasters. In this paper, the systematic hazard identification and risk assessment of water inrush were carried out on the basis of the hydrogeological structure investigation of the Maoping lead-zinc mine in Northeast Yunnan Province. The control measures of water inrush hazard sources were determined in the deep mining process. According to the geological, tectonic and hydrogeological conditions of the Maoping lead-zinc mine, two types of hydrogeological structures were classified, namely, the strongly water-rich aquifer lateral filling water-steep dip type on the west flank of the Shimenkan anticline and the medium Karst aquifer roof-floor filling water-gentle type on the east flank of the Shimenkan anticline. From the three aspects of tectonic development, aquifer/aquiclude and mining disturbance, a detailed analysis of the hazard identification and risk assessment of water inrush in deep mining of the Maoping lead-zinc mine was conducted. An analytic hierarchy process evaluation model was established to obtain the evaluation map of water inrush risk in the main mining level. The five area types of safe, relatively safe, transitional, relatively dangerous and dangerous area were divided. The evaluation results show that the drainage center of the inverted triangular cone of the mine is the area with less risk of water inrush, i.e., the safe area. The Permian Qixia and Maokou Formation Karst fissure strong water-rich aquifer in the north is the area with the greatest risk of water inrush in the deep mining, i.e., the dangerous area. The zoning maps of the 490 m and 310 m levels show that the dangerous area and the relatively dangerous area are striped in a north-east and north-west direction, which is consistent with the development direction of the main hydraulic conductivity structures. This research provides a scientific basis for the establishment of a five-in-one integrated water control key technology system of "exploration, prevention, blocking, dredging and monitoring" in the deep mining of metal mines.
-
Key words:
- Metal mines /
- Deep mining /
- Hazard identification /
- Risk assessment /
- Grout curtain
-
图 1 区域地质概况,(a)区域构造纲要图;(b)矿区地层与矿体剖面图(据韩润生等(2019)修改);(c)矿区地质与水文地质概况
Figure 1. Regional geological overview, (a) Regional structure outline map; (b) Section of strata and ore bodies (modified from Han et al.(2019)); (c) Geology and hydrogeology of the mining area
表 1 我国部分开采深度超1000m的金属矿山
Table 1. Some metal mines with mining depth over 1000m in China
金属矿名称 开采深度/m 崟鑫金矿 1600 会泽铅锌矿 1500 六苴铜矿 1500 夹皮沟金矿 1500 秦岭金矿 1400 红透山铜矿 1300 文峪金矿 1300 潼关中金 1200 玲珑金矿 1150 冬瓜山铜矿 1100 湘西金矿 1100 阿舍勒铜矿 1100 三山岛金矿 1050 金川二矿区 1000 山东金洲矿 1000 弓长岭铁矿 1000 表 2 注浆帷幕内外观测孔水位变化
Table 2. Water level change of observation holes inside and outside the grout curtain
观测孔 注浆帷幕外观测孔 注浆帷幕内观测孔 水地7 水地1 BK01 ZK001 水8-12 CK03 注浆前水位/m 882.58 871.88 870.61 881.05 872.65 821.28 注浆后水位/m 883.23 884.82 887.21 851.77 853.47 799.87 变化幅度/m +0.653 +12.94 +16.6 -29.29 -19.18 -81.41 -
Bai Q H, Bai F, He J M. 2000. Status of production system and structure of risk sources[J]. China Safety Science Journal, 10 (5): 71-75. doi: 10.3969/j.issn.1003-3033.2000.05.014 Cai M F, Tan W H, Wu X H, et al. 2021. Current situation and development strategy of deep intelligent mining in metal mines[J]. The Chinese Journal of Nonferrous Metals, 31 (11): 3409-3421. Cai M F, Xue D L, Ren F H. 2019. Current status and development strategy of metal mines[J]. Chinese Journal of Engineering, 41 (4): 417-426. Dong S N, Wang H, Guo X M, et al. 2021. Characteristics of water hazards in China's coal mines: A review[J]. Mine Water and the Environment, 40 (2): 325-333. doi: 10.1007/s10230-021-00770-6 Dunjó J, Fthenakis V, Vílchez J A, et al. 2010. Hazard and operability(HAZOP)analysis: A literature review[J]. Journal of Hazardous Materials, 173 (1): 19-32. Gong F Q, Pan J F, Jiang Q. 2021. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 29 (4): 933-961. Guo J Y, Zhang Z B, Sun Q Y. 2008. Study and application of analytic hierarchy process[J]. China Safety Science Journal, 18 (5): 148-153. doi: 10.3969/j.issn.1003-3033.2008.05.025 Guo J, Ma F S, Zhao H J, et al. 2015. Preferred seepage channels and source of water inrush in seabed gold mine at Sanshandao[J]. Journal of Engineering Geology, 23 (4): 784-789. Han G L. 2018. Experimental study on modified clay curtain grouting technology in Fishbone-type drilling[J]. Metal Mine, (9): 69-73. Han R S, Wu P, Wu F, et al. 2019. 'Four Steps Type' ore-prospecting method for deeply concealed hydrothermal ore deposits—A case study of the Maoping Zn-Pb-(Ag-Ge) deposit in Southwestern China[J]. Geotectonica et Metallogenia, 43 (2): 246-257. He M C, Xie H P, Peng S P, et al. 2005. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 24 (16): 2803-2813. Huang B X, Zhang N, Jing H W, et al. 2020. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J]. Journal of China Coal Society, 45 (3): 911-926. Huang H, Chen Z H, Wang T, et al. 2021. Pattern and degree of groundwater recharge from river leakage in a karst canyon area under intensive mine dewatering[J]. Science of the Total Environment, 774: 144921. doi: 10.1016/j.scitotenv.2020.144921 Li Q, Sui W H, Sun B T, et al. 2022. Application of TOPSIS water abundance comprehensive evaluation method for karst aquifers in a lead zinc mine, China[J]. Earth Science Informatics, 15 (1): 397-411. doi: 10.1007/s12145-021-00730-2 Liu J W, Yang B B, Yuan S C, et al. 2021. A fuzzy analytical process to access the risk of disaster when backfill mining under aquifers and buildings[J]. Mine Water and the Environment, 40 (4): 891-901. doi: 10.1007/s10230-021-00822-x Queral C, Gómez-Magán J, París C, et al. 2018. Dynamic event trees without success criteria for full spectrum LOCA sequences applying the integrated safety assessment(ISA)methodology[J]. Reliability Engineering & System Safety, 171 : 152-168. Shi H W, Huang J R, Mu X W, et al. 2019. Study on roof failure and instability of rectangular drift with downward horizontal slicing cemented filling in Maoping Mine[J]. Mining Research and Development, 39 (12): 16-21. Shi W H, Yang T H, Chang H, et al. 2016. Water-inrush mechanism and countermeasure for the roof of working face in Zhongguan iron mine[J]. Journal of Mining & Safety Engineering, 33 (3): 403-408. Sui W H, Liu J W, Gao B L, et al. 2019a. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society, 44 (8): 2419-2426. Sui W H, Wang D D, Sun Y J, et al. 2019b. Mine hydrogeological structure and its responses to mining[J]. Journal of Engineering Geology, 27 (1): 21-28. Sui W H. 2021. Mine safety geology: A review[J]. Journal of Engineering Geology, 29 (4): 901-916. Sui W H. 2022. Active prevention and control of water-sand mixture inrush with high potential energy due to mining based on structural hydrogeology[J]. Journal of Engineering Geology, 30 (1): 101-109. Tan J, Liu Z Q, Song Z Y, et al. 2021. Status and development trend of mine shaft sinking technique in China[J]. Metal Mine, (5): 13-24. Wang D D. 2021. Dynamic hazards identification and risk assessment of mine water inrush from coal seam floor[D]. Xuzhou: China University of Mining and Technology. Wang X Y, Yao M J, Zhang J G, et al. 2019. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining and Safety Engineering, 36 (3): 558-565. Wu Q, Xu H, Pang W. 2008. GIS and ANN coupling model: An innovative approach to evaluate vulnerability of karst water inrush in coalmines of north China[J]. Environmental Geology, 54 (5): 937-943. doi: 10.1007/s00254-007-0887-3 Xie H P. 2019. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 44 (5): 1283-1305. Yuan S C, Han G L. 2020. Combined drilling methods to install grout curtains in a deep underground mine: A case study in Southwest China[J]. Mine Water and the Environment, 39 (4): 902-909. doi: 10.1007/s10230-020-00701-x Zhang G L. 2022. Mechanism of deflection propagation for grouting in fractured rock mass with flowing water and mining effect on grouted curtain: A review[J]. Journal of Engineering Geology, 30 (3): 987-997. Zhang P S, Niu H, Zhu H C, et al. 2021. Analysis of coal mine safety production situation in China from 2019 to 2020[J]. Safety in Coal Mines, 52 (11): 245-249. Zhao H Z, Xu X D. 2006. Discrimination of the concept of hazard[J]. China Safety Science Journal, 16 (1): 65-70. Zhao Y, Zhao G Y, Pei D F, et al. 2021. Analysis on connotation, characteristics and type of green mining mode for underground metal mines[J]. The Chinese Journal of Nonferrous Metals, 31 (12): 3700-3712. 白勤虎, 白芳, 何金梅. 2000. 生产系统的状态与危险源结构[J]. 中国安全科学学报, 10 (5): 71-75. doi: 10.16265/j.cnki.issn1003-3033.2000.05.014 蔡美峰, 谭文辉, 吴星辉, 等. 2021. 金属矿山深部智能开采现状及其发展策略[J]. 中国有色金属学报, 31 (11): 3409-3421. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202111026.htm 蔡美峰, 薛鼎龙, 任奋华. 2019. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 41 (4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm 宫凤强, 潘俊锋, 江权. 2021. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 29 (4): 933-961. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104003.htm 郭捷, 马凤山, 赵海军, 等. 2015. 三山岛海底金矿突涌水优势渗流通道与来源研究[J]. 工程地质学报, 23 (4): 784-789. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201504034.htm 郭金玉, 张忠彬, 孙庆云. 2008. 层次分析法的研究与应用[J]. 中国安全科学学报, 18 (5): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200805026.htm 韩贵雷. 2018. "鱼刺型"钻孔改性黏土帷幕注浆工艺试验研究[J]. 金属矿山, (9): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201809013.htm 韩润生, 吴鹏, 王峰, 等. 2019. 论热液矿床深部大比例尺"四步式"找矿方法——以川滇黔接壤区毛坪富锗铅锌矿为例[J]. 大地构造与成矿学, 43 (2): 246-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201902005.htm 何满潮, 谢和平, 彭苏萍, 等. 2005. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 24 (16): 2803-2813. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200516000.htm 黄炳香, 张农, 靖洪文, 等. 2020. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报, 45 (3): 911-926. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003006.htm 师文豪, 杨天鸿, 常宏, 等. 2016. 中关铁矿工作面顶板突水机理及防治对策[J]. 采矿与安全工程学报, 33 (3): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201603005.htm 石宏伟, 黄吉荣, 沐兴旺, 等. 2019. 毛坪矿下向水平分层胶结充填矩形进路顶板破坏失稳研究[J]. 矿业研究与开发, 39 (12): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201912004.htm 隋旺华, 刘佳维, 高炳伦, 等. 2019a. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报, 44 (8): 2419-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908017.htm 隋旺华, 王丹丹, 孙亚军, 等. 2019b. 矿山水文地质结构及其采动响应[J]. 工程地质学报, 27 (1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901003.htm 隋旺华. 2022. 基于结构水文地质学的采掘诱发高势能突水溃砂主动防控[J]. 工程地质学报, 30 (1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201008.htm 隋旺华. 2021. 矿山安全地质学: 综述[J]. 工程地质学报, 29 (4): 901-916. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104001.htm 谭杰, 刘志强, 宋朝阳, 等. 2021. 我国矿山竖井凿井技术现状与发展趋势[J]. 金属矿山, (5): 13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202105003.htm 王丹丹. 2021. 煤层底板突水危险源动态辨识及危险性动态评价[D]. 徐州: 中国矿业大学. 王心义, 姚孟杰, 张建国, 等. 2019. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报, 36 (3): 558-565. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201903017.htm 谢和平. 2019. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 44 (5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm 张改玲. 2022. 裂隙注浆偏流机理及帷幕体采动效应研究综述与展望[J]. 工程地质学报, 30 (3): 987-997. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203035.htm 张培森, 牛辉, 朱慧聪, 等. 2021.2019~2020年我国煤矿安全生产形势分析[J]. 煤矿安全, 52 (11): 245-249. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202111039.htm 赵宏展, 徐向东. 2006. 危险源的概念辨析[J]. 中国安全科学学报, 16 (1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200601013.htm 赵源, 赵国彦, 裴佃飞, 等. 2021. 地下金属矿绿色开采模式的内涵、特征与类型分析[J]. 中国有色金属学报, 31 (12): 3700-3712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202112021.htm -