基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理

周昌 马文超 胡元骏 史光明

周昌, 马文超, 胡元骏, 等. 2023. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理[J]. 工程地质学报, 31(4) : 1407-1417. doi: 10.13544/j.cnki.jeg.2022-0550
引用本文: 周昌, 马文超, 胡元骏, 等. 2023. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理[J]. 工程地质学报, 31(4) : 1407-1417. doi: 10.13544/j.cnki.jeg.2022-0550
Zhou Chang, Ma Wenchao, Hu Yuanjun, et al. 2023. Failure mechanism of water-level fluctuation zone with umbrella-shaped anchors under rapid drawdown based on transparent soil [J]. Journal of Engineering Geology, 31(4) : 1407-1417. doi: 10.13544/j.cnki.jeg.2022-0550
Citation: Zhou Chang, Ma Wenchao, Hu Yuanjun, et al. 2023. Failure mechanism of water-level fluctuation zone with umbrella-shaped anchors under rapid drawdown based on transparent soil [J]. Journal of Engineering Geology, 31(4) : 1407-1417. doi: 10.13544/j.cnki.jeg.2022-0550

基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理

doi: 10.13544/j.cnki.jeg.2022-0550
基金项目: 

新疆维吾尔自治区重点研发计划项目 2021B03004-3

江苏省自然科学基金青年项目 BK20221126

国家自然科学基金青年项目 42207169

详细信息
    通讯作者:

    周昌(1993-),男,博士,讲师,主要从事地质灾害防治方面的工作. E-mail: changzhou@cumt.edu.cn

  • 中图分类号: P642.22

FAILURE MECHANISM OF WATER-LEVEL FLUCTUATION ZONE WITH UMBRELLA-SHAPED ANCHORS UNDER RAPID DRAWDOWN BASED ON TRANSPARENT SOIL

Funds: 

Regional Key Research and Development Program of Xinjiang Province 2021B03004-3

Natural Science Foundation of Jiangsu Province BK20221126

National Natural Science Foundation of China 42207169

  • 摘要: 消落带是关系到库岸滑坡稳定性的敏感地带,尤其在库水下降作用下,消落带应力、渗流及变形发生明显改变。而伞形锚作为一种新型锚固技术,以其结构简单、安装方便、承载力高等优点逐渐运用于工程实践。因此,研究库水位骤降下消落带滑坡-伞型锚固体系破坏机理具有重要意义。本文以新疆TH1水库滑坡水位消落带为原型,采用透明土模型试验,考虑不同坡角和锚固间距,设计了6个消落带滑坡-伞型锚固体系物理试验。采用粒子图像测速(PIV)技术获得了滑坡内部位移、速度和宏观变形数据。结果发现:(1)较未加固模型,减少坡角、植入伞型锚杆可以明显提高消落带滑坡稳定性,减少消落带滑坡滑移速度及破坏程度;(2)不同锚固间距与消落带坡角条件下,消落带滑坡-伞型锚固体系呈现3种典型破坏模式:完全贯穿式,局部滑移式及多级滑移式;(3)坡角越大,滑坡受库水位骤降影响越大,滑动面越深,而伞型锚杆的植入可以改变滑动面的形态、位置,提高滑坡整体稳定性。
  • 图  1  TH1滑坡

    a. 滑坡正视图;b. 滑坡剖面图

    Figure  1.  TH1 Landslide

    图  2  模型系统与监测系统

    Figure  2.  Physical model testing system and monitoring system

    图  3  a. 熔融石英砂粒径级配,b. 抗剪强度,c. 不同温度下3种溶液的折射率,d. 熔融石英砂,e-f. 不同配比溶液透明度

    Figure  3.  (a)Grain size accumulation curve,(b)shear strength of standar sand and fused quartz sand,(c)refractive indexes of three liquids at different temperatures,(d)molten quartz sand, (e-f)the transparent of differnet mix liquids

    图  4  3种锚固方式

    D. 锚杆净间距;R. 锚板宽度

    Figure  4.  Schematic diagram of anchoring scheme

    图  5  不同时刻时未加固模型(L0)变形速度云图

    a. t=30s;b. t=60s;c. t=90s;d. t=120s;e. t=150s;f. t=180s

    Figure  5.  Velocity of L0 model at different time

    图  6  不同时刻时加固模型(L4)变形速度云图

    a. t=30s;b. t=90s;c. t=120s;d. t=180s;e. t=210s;f. t=240s

    Figure  6.  Velocity of L4 model at different time

    图  7  不同时刻时未加固模型(L0)位移云图

    a. t=30s;b. t=60s;c. t=90s;d. t=120s;e. t=150s;f. t=180s

    Figure  7.  Deformation of L0 model at different time

    图  8  不同时刻时加固模型(L4)位移云图

    a. t=30s;b. t=90s;c. t=120s;d. t=180s;e. t=210s;f. t=240s

    Figure  8.  Displacement of L4 model at different time

    图  9  消落带-锚固体系平均速率与位移时间曲线

    a. 不同锚固间距模型;b. 不同滑坡倾角模型

    Figure  9.  Comparison of the average displacement and speed-time curve

    图  10  消落带滑坡-伞型锚固体系破坏模式

    a. 模型L1(坡角=34°,D=2.5R)破坏模式;b. 模型L2(坡角=25°,D=2.5R)破坏模式;c. 模型L4(坡角=34°,D=R)破坏模式

    Figure  10.  Failure model of the WLF slope-anchor system

    表  1  原型与模型参数

    Table  1.   The parameters of the model and prototype

    长度/cm 高度/cm 宽度/cm 重度/kN·m-3 黏聚力/kPa 摩擦角/tan φ
    原型 1650 1100 750 20.1 30 0.404
    模型 22 15 10 13.3 0.4 0.404
    相似比 75 75 75 1.5 75 1
    下载: 导出CSV

    表  2  高纯度熔融石英砂及标准砂物理力学参数

    Table  2.   Parameters of fused quartz and sand

    试样名称 比重Gs 最大干密度/g·cm-3 最小干密度/g·cm-3 最大孔隙比 渗透系数/cm·s-1 内摩擦角/(°)
    熔融石英砂 2.18 1.388 1.188 0.835 0.0063 39.5
    标准砂 2.63 1.880 1.522 0.740 0.0057 43.0
    下载: 导出CSV

    表  3  相似锚杆与原型参数

    Table  3.   Parameters and similar ratio of the prototype and model

    锚杆 抗拉强度/MPa 弹性模量/GPa 直径/mm 倾角/(°) 张开角/(°)
    原型 300~600 200 22 25 120
    模型 15 2 4 25 120
    相似比 20~40 100 5.5 1 1
    下载: 导出CSV

    表  4  消落带滑坡-伞型锚固体系试验设计方案

    Table  4.   Parameters of six models of WLF zone-anchor cables system

    试验序号 试验因素与水平
    坡角/(°) 水位下降速度/cm·min-1 锚固方式
    L1 34 5 D=2.5R
    L2 25 5 D=2.5R
    L3 30 5 D=2.5R
    L4 34 5 D=R
    L5 34 5 D=R & 2.5R
    L0 34 5 /
    下载: 导出CSV

    表  5  消落带滑坡体系变形破坏特征

    Table  5.   Deformation characteristics of the WLF zone system

    模型 始滑时间/s (变形率≥0.03mm·s-1) 最大平均位移/mm 最大平均速度/cm·s-1
    L1 50 12.47 0.216
    L2 96 5.10 0.074
    L3 93 13.28 0.169
    L4 72 5.19 0.114
    L5 61.6 10.80 0.214
    L0 31 16.23 0.234
    下载: 导出CSV
  • Allersma H G B. 1982. Photo-elastic stress analysis and strain in simple shear[C]//IUTAM Conference on Deformation and Failure of Granular Materials.
    Mannheimer R. 1990. Slurries you can see through[J]. Technology Today, (3): 2.
    Cai M, Champaigne D. 2012. Influence of bolt-grout bonding on MCB conebolt performance[J]. International Journal of Rock Mechanics and Mining Sciences, 49 : 165-175. doi: 10.1016/j.ijrmms.2011.11.006
    Chen F F. 2016. Study on the anchoring mechanism of umbrella-shaped anchor and its reinforced soil slopes technology[D]. Wuhan: Changjiang River Scientific Research Institute.
    Chen Y H, Wang M X, Xiong Y. 2019. Application of umbrella-shaped anchor to the reinforcement of temporary expansive soil slope in north Hubei Water diversion project[J]. Journal of Yangtze River Scientific Research Institute, 36 (4): 71-76.
    Dai L P, Pan Y S, Wang A W. 2018. Study of the energy absorption performance of an axial splitting component for anchor bolts under static loading[J]. Tunnelling and Underground Space Technology, 81 : 176-186. doi: 10.1016/j.tust.2018.07.009
    Feng D, Huang P. 2016. Field test of grouted umbrella-shaped ground anchors[J]. Soil Engineering and Foundation, 35 (1): 86-90.
    Gao C X, Liu Y L, Xue X, et al. 2021. Study on deformation lag time effect of typical colluvial landslide in Three Gorges Reservoir Area[J]. Journal of Engineering Geology, 29 (5): 1427-1436.
    Guardiani C, Soranzo E, Wu W. 2021. Time-dependent reliability analysis of unsaturated slopes under rapid drawdown with intelligent surrogate models[J]. Acta Geotechica, 17 : 1071-1096.
    He M C, Gong W L, Wang J, et al. 2014. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 67 : 29-42. doi: 10.1016/j.ijrmms.2014.01.007
    Hong Y S, Chen R H, Wu C S, et al. 2005. Shaking table tests and stability analysis of steep nailed slopes[J]. Canadian Geotechnical Journal, 42 (5): 1264-1279. doi: 10.1139/t05-055
    Hou X P, Chen S H, Shahrour I. 2021. Judgement of rapid drawdown conditions in slope stability analysis[J]. Bulletin of Engineering Geology and the Environment, 80 : 4379-4387. doi: 10.1007/s10064-021-02253-y
    Hu X L, Tan F L, Tang H M, et al. 2017. In-situ monitoring plat-form and preliminary analysis of monitoring data of Majiagou landslide with stabilizing piles[J]. Engineering Geology, 228 : 323-336. doi: 10.1016/j.enggeo.2017.09.001
    Hu X L, Zhang M, Sun M J, et al. 2015. Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China[J]. Bulletin of Engineering Geology and Environment, 74 : 1-12. doi: 10.1007/s10064-013-0552-x
    Huang P L, Zhang G. 2020. Study on slope stability under coupling loading condition by limit analysis method[J]. Journal of Engineering Geology, 28 (2): 394-400.
    Huang Q X, Wang J L, Xue X. 2016. Interpreting the influence of rainfall and reservoir infilling on a landslide[J]. Landslides, 13 : 1139-1149. doi: 10.1007/s10346-015-0644-8
    Huang S, Shan H S, Xuan W F, et al. 2022. High performance humidity sensor based on CsPdBr3 nanocrystals for noncontact sensing hydro-mechanical characteristics of unsaturated soil[J]. Physica Status Solidi(RRL)-Rapid Research Letters, 16 (6): 1-9.
    Huang B, Guo C, Tang Y, et al. 2019. Experimental study on the permeability characteristic of fused quartz sand and mixed oil as a transparent soil[J]. Water, 11(12): 2514. doi: 10.3390/w11122514
    Iskander M, Bathurst R J, Omidvar M. 2015. Past, present, and future of transparent soils[J]. Geotechnical Testing Journal, 38 (5): 393-401.
    Iskander M G, Liu J, Sadek S. 2002. Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 128 (3): 262-273. doi: 10.1061/(ASCE)1090-0241(2002)128:3(262)
    Jin D, Li J, Gong J, et al. 2021. Shipborne mobile photogrammetry for 3D mapping and landslide detection of the water-level fluctuation zone in the Three Gorges Reservoir Area, China[J]. Remote Sensing, 13 : 1007-1032. doi: 10.3390/rs13051007
    Jones F O, Embody D R, Peterson W L. 1961. Landslides along the Columbia River Valley, Northeastern Washington[C]//U.S. Geological Survey Professional Paper 367.
    Kaiser P, Maloney S, Yazici S. 1993. New perspective on cable bolt design[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30 (2): 1-9.
    Knox G, Berghorst A, Crompton B. 2018. The relationship between the magnitude of impact velocity per impulse and cumulative absorbed energy capacity of a rock bolt[C]//The 4th Australasian Ground Control in Mining Conference: 160-169.
    Lane P A, Griffiths D V. 2000. Assessment of stability of slopes under drawdown conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5): 443-450. doi: 10.1061/(ASCE)1090-0241(2000)126:5(443)
    Lei H Y, Liu Y N, Zai S B, et al. 2019. Visibility and mechanical properties of transparent clay[J]. Chinese Journal of Geotechnical Engineering, 41 (2): 53-56.
    Li C, Wu J, Wang J, et al. 2016. Layout and length optimization of anchor cables for reinforcing rock wedges[J]. Bulletin of Engineering Geology and the Environment, 75 (4): 1399-1412. doi: 10.1007/s10064-015-0756-3
    Li J, Chen S X, Yu F, et al. 2019. Reinforcement mechanism and optimisation of reinforcement approach of a high and steep slope using prestressed anchor cables[J]. Applied Sciences-Basel, 10 (1): 1-23. doi: 10.3390/app10010001
    Liu J, Iskander M G. 2010. Modelling capacity of transparent soil[J]. Canadian Geotechnical Journal, 47 (4): 451-460. doi: 10.1139/T09-116
    Ma W C. 2021. An experimental investigation on evolution of landslide anchorage system under sudden drop of reservoir water using transparent soil[D]. Xuzhou: China University of Mining and Technology.
    Meng Z. 2018. Experimental study on impulse waves generated by a viscoplastic material at laboratory scale[J]. Landslides, 15 (6): 1173-1182. doi: 10.1007/s10346-017-0939-z
    Morgenstern N. 1963. Stability charts for earth slopes during rapid drawdown[J]. Géotechnique, 13 (2): 121-131. doi: 10.1680/geot.1963.13.2.121
    Pincus H J, Iskander M G, Lai J, et al. 1994. Development of a transparent material to model the geotechnical properties of soils[J]. Geotechnical Testing Journal, 17 (4): 425-433. doi: 10.1520/GTJ10303J
    Sadek S, Iskander M G, Liu J. 2002. Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal, 39 (1): 111-124. doi: 10.1139/t01-075
    Shen J, Dong Y S, Jian W B, et al. 2020. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology, 28 (6): 1290-1299.
    Sui W, Zheng G. 2018. An experimental investigation on slope stability under drawdown conditions using transparent soils[J]. Bulletin of Engineering Geology & the Environment, 77 (3): 977-985.
    Sun G, Yang Y, Jiang W, et al. 2017. Effects of an increase in reservoir drawdown rate on bank slope stability: a case study at the Three Gorges Reservoir, China[J]. Engineering Geology, 221 : 61-69. doi: 10.1016/j.enggeo.2017.02.018
    Tan L Y, Huang R Q, Pei X J. 2021. Deformation characteristics and inducing mechanisms of a super-large bedding rock landslide triggered by reservoir water level decline in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (2): 302-314.
    Tang H M, Wasowski J, Juang C H. 2019. Geohazards in the Three Gorges Reservoir Area, China-Lessons learned from decades of research[J]. Engineering Geology, 261 : 1-16.
    Wang B, Hou H Y, Zhu Z W. 2021. Transparency and applications of transparent soil: a review[J]. Geotechnical Research, 8 (4): 130-138. doi: 10.1680/jgere.21.00016
    Wang F W, Zhang Y M, Wang G H, et al. 2007. Deformation features of Shuping landslide caused by water level changes in Three Gorges Reservoir area, China[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (3): 509-517.
    Wang G, Wu X, Jiang Y, et al. 2013. Quasi-static laboratory testing of a new rock bolt for energy-absorbing applications[J]. Tunneling and Underground Space Technology, 38 : 122-128. doi: 10.1016/j.tust.2013.05.010
    Wang S R, Xiao H G, Zou Z S, et al. 2019. Mechanical performances of transverse rib bar during pull-out test[J]. International Journal of Applied Mechanics, 11 (5): 1-15.
    Wang X G, Hu B, Lian B Q, et al. 2013. 3D analysis of interaction of landslide and anti-slide piles system under sudden change of reservoir water level[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (12): 2439-2446.
    Wang Z, Li C, Ding X M. 2019. Model tests on sliding mechanism of soil-rock slopes based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 41 (S2): 185-188.
    Wang Z, et al. 2019. Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism[J]. Journal of Mountain Science 16 (4): 935-943. doi: 10.1007/s11629-018-5083-2
    Wei L, Xu Q, Wang S, et al. 2019. Development of transparent cemented soil for geotechnical laboratory modelling[J]. Engineering Geology, 262 : 1-8.
    Wei L T, Xu Q, Wang S Y, et al. 2020. The morphology evolution of the shear band in slope: insights from physical modelling using transparent soil[J]. Bulletin of Engineering Geology and the Environment, 79 (4): 1849-1860. doi: 10.1007/s10064-019-01649-1
    Wu Y D, Chen J M, Zhou Y F, et al. 2020. Distribution and basic characteristics of new transparent clay[J]. Chinese Journal of Geotechnical Engineering, 42 (S1): 141-145.
    Wu Y J, Li J P, Jiang H B, et al. 2020. Consolidation and permeability characteristics of transparent clay with different grain composition[J]. Journal of Northeastern University(Natural Science), 41 (6): 875-880.
    Xia H B, Chen Z Z, Zhang Y J, et al. 2013. Study on anchorage technology of the umbrella-shape soil anchor[C]//Fourth International Conference on Digital Manufacturing and Automation, 1254-1257.
    Xiao J F, Li Y A, Cai J M. 2020. Model test research on response characteristics of Outang landslide under water level fluctuation[J]. Journal of Engineering Geology, 28 (5): 1049-1056.
    Xie Q, Cao Z L, Shi X K, et al. 2021. Model test of interaction between load-caused landslide and double-row anti-slide piles by transparent soil material[J]. Arabian Journal for Science and Engineering, 46 (5): 4841-4856. doi: 10.1007/s13369-020-05256-1
    Xu B, Liu X R, Zhou X H, et al. 2022. Experimental study on the dynamic response law of bedding rock slope under deterioration of rock mass in hydro-fluctuation belt[J]. Chinese Journal of Geotechnical Engineering, 44 (8): 1453-1462.
    Yang Y, Hu X W, Wang Y, et al. 2021. Preliminary study on methods to calculate dynamic reserves of slope erosioning materials transported by post-fire debris flow[J]. Journal of Engineering Geology, 29 (1): 151-161.
    Zhang P, Zhang S L, Huang B L, et al. 2021. Study on the evolution model of neogenic landslide(collapse) hazards in rock mass of hydro-fluctuation belt[J]. Journal of Engineering Geology, 29 (5): 1416-1426.
    Zhang Z Q, Xie G X, Wang L, et al. 2017. Study on surrounding rock deformation failure law and soft rock roadway support with thick composite roof[J]. Journal of Engineering Science and Technology Review, 10 (4): 204-212.
    Zhao L H, Luo Q, Li L, et al. 2013. Energy analysis method for slopes reinforcing with prestressed anchor cables based on minimum energy principle of instability state[J]. Rock and Soil Mechanics, 34 (2): 426-432.
    Zheng W, Zhuang X, Cai Y. 2012. On the seismic stability analysis of reinforced rock slope and optimization of prestressed cables[J]. Frontiers of Structural and Civil Engineering, 6 (2): 132-146.
    Zheng Y R, Shi W M, Kong W X. 2004. Calculation of seepage forces and phreatic surface under drawdown conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 23 (18): 3203-3210.
    Zhongcun H Z. 1990. Discussion reservoir landslide[J]. Bulletin of Soil and Water Conservation, 10 (1): 53-64.
    Zhou C, Hu X L, Xu C, et al. 2018. Model test on deformation and failure of landslide in water-level-fluctuating zone of Three Gorges Reservoir Region[J]. China Journal of Highway and Transport, 31 (2): 252-260.
    Zhou C, Hu X L, Xu C, et al. 2018. Model test deformation and failure of landslide in water-level-fluctuating zone of Three Gorges Reservoir Region[J]. China Journal of Highway Transportation, 31 (2): 252-260.
    Zhou C, Ma W C, Sui W H. 2022. Transparent soil model test of a landslide with umbrella-shaped anchors and different slope angles in response to rapid drawdown[J]. Engineering Geology, 307 (4): 1-12.
    Zhu H H, Mei G X, Xu M, et al. 2014. Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor[J]. Geomechanics and Engineering, 7 (2): 165-181. doi: 10.12989/gae.2014.7.2.165
    陈凡凡. 2016. 伞型锚锚固机理及加固土质边坡技术研究[D]. 武汉: 长江科学院.
    程永辉, 王满兴, 熊勇. 2019. 伞型锚在鄂北调水工程膨胀土临时边坡加固中的应用[J]. 长江科学院院报, 36 (4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201904017.htm
    冯党, 黄鹏. 2021. 注浆伞型锚锚固特性现场试验研究[J]. 土工基础, 35 (1): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202101021.htm
    高晨曦, 刘艺梁, 薛欣, 等. 2021. 三峡库区典型堆积层滑坡变形滞后时间效应研究[J]. 工程地质学报, 29 (5): 1427-1436. doi: 10.13544/j.cnki.jeg.2021-0042
    黄珮伦, 张嘎. 2020. 水位上升与荷载耦合作用下土坡稳定极限分析方法研究[J]. 工程地质学报, 28 (2): 394-400. doi: 10.13544/j.cnki.jeg.2020-079
    雷华阳, 刘英男, 翟塞北, 等. 2019. 透明黏土可视度及物理力学特性研究[J]. 岩土工程学报, 41 (2): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2015.htm
    马文超. 2021. 库水骤降条件下滑坡-锚固体系演化透明土试验研究[D]. 徐州: 中国矿业大学.
    沈佳, 董岩松, 简文彬, 等. 2020. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报, 28 (6): 1290-1299. doi: 10.13544/j.cnki.jeg.2019-540
    谭淋耘, 黄润秋, 裴向军. 2021. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 40 (2): 302-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102007.htm
    汪发武, 张业明, 王功辉, 等. 2007. 三峡库区树坪滑坡受库水位变化产生的变形特征[J]. 岩石力学与工程学报, 26 (3): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703009.htm
    王新刚, 胡斌, 连宝琴, 等. 2013. 库水位骤变下滑坡-抗滑桩体系作用三维分析[J]. 岩石力学与工程学报, 32 (12): 2439-2446. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312008.htm
    王壮, 李驰, 丁选明. 2019. 基于透明土技术土岩边坡滑移机理的模型试验研究[J]. 岩土工程学报, 41 (S2): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm
    吴跃东, 陈明建, 周云峰, 等. 2020. 新型透明黏土的配制及其基本特性研究[J]. 岩土工程学报, 42 (S1): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm
    武亚军, 李俊鹏, 姜海波, 等. 2020. 不同颗粒级配透明黏土的固结与渗透特性[J]. 东北大学学报(自然科学版), 41 (6): 875-880. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202006020.htm
    肖捷夫, 李云安, 蔡浚明. 2020. 水位涨落作用下藕塘滑坡响应特征模试验研究[J]. 工程地质学报, 28 (5): 1049-1056. doi: 10.13544/j.cnki.jeg.2020-326
    许彬, 刘新荣, 周小涵, 等. 2022. 消落带岩体劣化下顺层岩质边坡动力响应规律试验研究[J]. 岩土工程学报, 44 (8): 1453-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202208010.htm
    杨瀛, 胡卸文, 王严, 等. 2021. 火后泥石流流域坡面侵蚀物源动储量估算方法探讨[J]. 工程地质学报, 29 (1): 151-161. doi: 10.13544/j.cnki.jeg.2020-008
    张鹏, 张森林, 黄波林, 等. 2021. 岸坡消落带岩体劣化的新生型滑坡(崩塌)隐患演化模式研究[J]. 工程地质学报, 29 (5): 1416-1426. doi: 10.13544/j.cnki.jeg.2021-0164
    赵炼恒, 罗强, 李亮, 等. 2013. 基于失稳状态耗能最小原理的预应力锚索加固边坡稳定性上限解析[J]. 岩土力学, 34 (2): 426-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302020.htm
    郑颖人, 时卫民, 孔位学. 2004. 库水位下降时渗透力及地下水浸润线的计算[J]. 岩石力学与工程学报, 23 (18): 3203-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200418038.htm
    中村浩之. 1990. 论水库滑坡[J]. 水土保持通报, 10 (1): 53-64. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB199001008.htm
    周昌, 胡新丽, 徐楚, 等. 2018. 三峡库区滑坡消涨带变形破坏模型试验[J]. 中国公路学报, 31 (2): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802028.htm
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  18
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-09-26
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回