南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究

郭桢 蒲建 卢劲锴 黄雨

郭桢, 蒲建, 卢劲错, 等. 2023. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究[J]. 工程地质学报, 31(5): 1552-1562. doi: 10.13544/j.cnki.jeg.2022-0692
引用本文: 郭桢, 蒲建, 卢劲错, 等. 2023. 南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究[J]. 工程地质学报, 31(5): 1552-1562. doi: 10.13544/j.cnki.jeg.2022-0692
Guo Zhen, Pu Jian, Lu Jinkai, et al. 2023. Resonant column and bender element tests of unsaturated coral sand on Xisha islands in South China Sea[J]. Journal of Engineering Geology, 31(5): 1552-1562. doi: 10.13544/j.cnki.jeg.2022-0692
Citation: Guo Zhen, Pu Jian, Lu Jinkai, et al. 2023. Resonant column and bender element tests of unsaturated coral sand on Xisha islands in South China Sea[J]. Journal of Engineering Geology, 31(5): 1552-1562. doi: 10.13544/j.cnki.jeg.2022-0692

南海西沙岛礁非饱和珊瑚砂共振柱-弯曲元试验研究

doi: 10.13544/j.cnki.jeg.2022-0692
基金项目: 

国家自然科学基金 42072301

国家自然科学基金 42120104008

详细信息
    作者简介:

    郭桢(1984-),男,博士,助理研究员,硕士生导师,主要从事工程地质教学与科研工作. E-mail:zhenguo@tongji.edu.cn

    通讯作者:

    黄雨(1973-),男,博士,教授,博士生导师,主要从事工程地质教学与科研工作. E-mail:yhuang@tongji.edu.cn

  • 中图分类号: TU411.8

RESONANT COLUMN AND BENDER ELEMENT TESTS OF UNSATURATED CORAL SAND ON XISHA ISLANDS IN SOUTH CHINA SEA

Funds: 

the National Natural Science Foundation of China 42072301

the National Natural Science Foundation of China 42120104008

  • 摘要: 为了确定珊瑚砂的动剪切模量和阻尼比等分析岛礁场地稳定性的主要动力学参数,本文针对我国南海西沙群岛某岛礁珊瑚砂,利用共振柱-弯曲元系统,研究了围压、相对密实度及饱和度对该珊瑚砂动剪切模量和阻尼比的影响规律。研究发现:(1)在饱和状态下,该珊瑚砂样的最大动剪切模量(G0)与围压及相对密实度整体呈现正相关关系,并且随着围压的增高G0对相对密实度的敏感性逐渐降低;(2)在非饱和情况下,该珊瑚砂样的动剪切模量比的整体范围略高于饱和状态下的动剪切模量比,而其阻尼比略低于饱和状态下的阻尼比;(3)该珊瑚砂样出现最小阻尼比和最大G0的饱和度约为10%;(4)在同样的围压下,珊瑚砂的特殊结构导致建立在硅质砂相对密实度和孔隙比的G0经验预测公式在预测珊瑚砂G0时分别出现了偏高和偏低的情况,本文根据珊瑚砂G0随围压的变化规律,对珊瑚砂G0经验预测公式进行了修正。研究成果可为南海西沙岛礁珊瑚砂场地稳定性分析中动力学参数取值提供参考。
  • 图  1  共振柱-弯曲元试验系统示意图

    Figure  1.  Illustration of the resonant column apparatus with bender element system

    图  2  珊瑚砂原样的粒径分布曲线

    Figure  2.  Grain size distribution curve of the original coral sand samples

    图  3  不同围压下珊瑚砂G0与相对密实度的关系(a)及其趋势线斜率与围压的关系(b)

    Figure  3.  Variations of G0 along with the relative compactness at different confining pressure(a) and the variation of the slope of its trend line with the confining pressure(b)

    图  4  不同相对密实度下珊瑚砂G0与围压的关系(a)及其趋势线斜率与相对密实度的关系(b)

    Figure  4.  Relationship between G0 of the coral sand sample and the confining pressure at different relative compactness (a) and the variation of the slope of its trend line with the relative compactness(b)

    图  5  不同围压和相对密实度下珊瑚砂动剪切模量(a~c)及其归一化曲线(d)

    Figure  5.  Dynamic shear modulus of coral sand(a~c) and its normalized curve (d) under different confining pressure and relative compactness

    图  6  不同围压和相对密实度下珊瑚砂阻尼比

    Figure  6.  Damping ratio of coral sand under different confining pressure and relative compactness

    图  7  珊瑚砂最大动剪切模量G0随饱和度的变化(a)及不同饱和度下动剪切模量G随动剪应变的变化(b)

    Figure  7.  The variation of the maximum dynamic shear modulus G0 with saturation degree (a) and the dynamic shear modulus G as a function of dynamic shear strain under various saturation degree(b)

    图  8  不同饱和度下动剪切模量比(a)及阻尼比(b)

    Figure  8.  Normalized dynamic shear modulus curve(a) and damping ratio(b) under different saturation degree

    图  9  G0的预测值与试验值

    Figure  9.  The predicted and actual values of G0

    图  10  G0归一化曲线

    Figure  10.  Normalized curve of G0

    图  11  不同围压下A1A2修正值

    Figure  11.  Revised value of A1 and A2 under different confining pressures

    图  12  本文考虑围压和相对密实度的G0预测值和试验值对比

    Figure  12.  Comparison of the G0 values obtained in the lab tests and the prediction considering the confining pressure and relative compactness

    表  1  珊瑚砂样基本物理性质指标

    Table  1.   The physical properties of the coral sand samples in this study

    颗粒比重 最大干密度/g·cm-3 最小干密度/g·cm-3 最大孔隙比 最小孔隙比
    2.75 1.41 1.11 1.48 0.94
    下载: 导出CSV

    表  2  本文试验方案设计

    Table  2.   Experimental design in this study

    围压σ/kPa 相对密实度Dr/% 饱和度Sr/% 测试内容
    共振柱(RCA) 弯曲元(BES)
    50 55、65、75 100 G-γλ-γ G0
    100 55、65、75 100
    150 55、65、75 100
    200 55、65、75 100
    150 75 0
    150 75 10
    150 75 20
    150 75 30
    150 75 40
    150 75 50
    150 75 60
    下载: 导出CSV
  • Chen G X, Liang K, Zhao K, et al. 2022. Shear modulus and damping ratio of saturated coral sand under generalised cyclic loadings[J]. Géotechnique, https://doi.org/10.1680/jgeot.21.00181. doi: 10.1680/jgeot.21.00181
    Chen G X, Liu X Z, Zhu D H, et al. 2006. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 28 (8): 1023-1027. doi: 10.3321/j.issn:1000-4548.2006.08.018
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26 (6): 1490-1498.
    Chen H Y, Wang R, Li J G, et al. 2005. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 26 (9): 1389-1392.
    Dong Q Y, Cai Y Q, Xu C J, et al. 2013. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element and resonant column tests[J]. Chinese Journal of Geotechnical Engineering, 35 (12): 2283-2289.
    Guo J Y. 1995. The problem of engineering geology of Nansha archipelago[J]. Chinese Journal of Rock Mechanics and Engineering, 14 (3): 282-287.
    Hardin B O, Black W L. 1966. Sand stiffness under various triaxial stresses[J]. ASCE Soil Mechanics and Foundation Division Journal, 92 (2): 27-42. doi: 10.1061/JSFEAQ.0000865
    Hardin B O, Richart F E. 1964. Elastic wave velocities in granular soils[J]. ASCE Soil Mechanics and Foundation Division Journal, 89 (1): 33-65.
    Huang R, Guo C C, Cao D F, et al. 2022. An improved murayama rheology model to describe the creep behavior of the mixture composed by calcareous sand and polyurethane polymer grouting[J/OL]. Journal of Engineering Geology, 2022-06-24, https://doi.org/10.13544/j.cnki.jeg.2021-0737.
    Javdanian H, Jafarian Y. 2018. Dynamic shear stiffness and damping ratio of marine calcareous and siliceous sands[J]. Geo-Marine Letters, 38 (4): 315-322. doi: 10.1007/s00367-018-0535-9
    Kokusho T. 1980. Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 20 (2): 45-60. doi: 10.3208/sandf1972.20.2_45
    Li J G, Wang R, Yu H Z, et al. 2005. Experimental research on effect of initial principal stress orientation on dynamic properties of calcareous sand[J]. Rock and Soil Mechanics, 26 (5): 723-727.
    Li T, Fang X W, Shen C N, et al. 2019. Progress of research on dynamic characteristics of coral sand[J]. Transactions of Oceanology and Limnology, (5): 90-95.
    Liang K, Chen G X, Hang T Z, et al. 2020a. A new prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 41 (6): 1963-1970, 1982.
    Liang K, Chen G X, Liu K, et al. 2020b. Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading[J]. Rock and Soil Mechanics, 41 (2): 601-611.
    Liang K, He Y, Chen G X. 2020c. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands[J]. Rock and Soil Mechanics, 41 (1): 23-31, 38.
    Lin L, Li S, Sun L Q, et al. 2020. Study of relative compaction for calcareous sand soil using dynamic cone penetration test[J]. Rock and Soil Mechanics, 41 (8): 2730-2738.
    Liu C Q, Wang R. 1998. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 19 (1): 32-37.
    Liu C Q, Yang Z Q, Wang R. 1995. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 16 (4): 74-83.
    Liu X, Li S, Liu X L, et al. 2019. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 41 (9): 1773-1780.
    Ma D H, Yao H Y, Wang X Z, et al. 2021. Particle shape characteristics of coral sands[J]. Journal of Engineering Geology, 29 (5): 1542-1549.
    Morsy A M, Salem M A, Elmamlouk H H. 2019. Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges[J]. Soil Dynamics and Earthquake Engineering, 116 : 692-708. doi: 10.1016/j.soildyn.2018.09.030
    Pham Huu Ha G, Van Impe P O, Van Impe W F, et al. 2017. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation[J]. Soil Dynamics and Earthquake Engineering, 100 : 371-379. doi: 10.1016/j.soildyn.2017.06.016
    Ren Y B, Wang Y, Yang Q. 2018. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 39 (2): 491-497.
    Seed H B, Idriss I M. 1970. Soil moduli and damping factors for dynamic response analyses[R]. Berkeley: University of California, Berkeley.
    Sun Z X. 2000. Engineering properties of coral sands in nansha islands[J]. Tropic Oceanology, 19 (2): 1-8.
    Tang L S. 2001. New suggestion on shear strength in unsaturated soil based on suction between grains[J]. Chinese Journal of Geotechnical Engineering, 23 (4): 412-417.
    Wang G, Yin H, Zheng H H, et al. 2021. Comparative experimental study on liquefaction characteristics of carbonate and silica sands[J]. Journal of Engineering Geology, 29 (1): 69-76.
    Wang H D, Weng F F, Cai C F. 2019. Effects of particle size and moisture content on dynamic characteristics of unsaturated sandy soil[J]. Journal of Railway Science and Engineering, 16 (2): 359-366.
    Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs——engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27 (1): 202-207.
    Wen Z, Duan Z G, Li S D, et al. 2020. Shear mechanical properties of dredged coral sands from South China Sea, China[J]. Journal of Engineering Geology, 28 (1): 77-84.
    Wu Q, Yang Z T, Liu K, et al. 2022. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 44 (8): 1386-1396.
    Wu Y, Cui J, Li C, et al. 2022. Experimental study on the effect of fines on the maximum dynamic shear modulus of coral sand in a hydraulic fill island-reef[J]. Chinese Journal of Rock Mechanics and Engineering, 41 (1): 205-216.
    Yu W P, Gu L L, Wang Z, et al. 2021. Experimental study on influence of particle breakage to critical state of calcareous sand[J]. Journal of Engineering Geology, 29 (5): 1276-1285.
    Zhang B, Chai S X, Wei H Z, et al. 2020. Influence of coral sand particle shape on the compression property of coarse grained calcareous soil[J]. Journal of Engineering Geology, 28 (1): 85-93.
    Zhao H T, Wen X S, Sun Z X, et al. 1996. Characteristics of coral reef in the nansha islands[J]. Acta Oceanologica Sinica, 18 (5): 61-70.
    Zhu C, Zhou B, Liu H. 2015. Micro-structures and fundamental engineering properties of beach calcarenite from South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (4): 683-693.
    陈国兴, 刘雪珠, 朱定华, 等. 2006. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 28 (8): 1023-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm
    陈海洋, 汪稔, 李建国, 等. 2005. 钙质砂颗粒的形状分析[J]. 岩土力学, 26 (9): 1389-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm
    陈火东, 魏厚振, 孟庆山, 等. 2018. 颗粒破碎对钙质砂的应力-应变及强度影响研究[J]. 工程地质学报, 26 (6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    董全杨, 蔡袁强, 徐长节, 等. 2013. 干砂饱和砂小应变剪切模量共振柱弯曲元对比试验研究[J]. 岩土工程学报, 35 (12): 2283-2289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312024.htm
    郭见扬. 1995. 略论南沙群岛的工程地质问题[J]. 岩石力学与工程学报, 14 (3): 282-287. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX503.011.htm
    黄锐, 郭成超, 曹鼎峰, 等. 2022. 珊瑚钙质砂-聚氨酯高聚物复合体蠕变村山流变模型改进[J/OL]. 工程地质学报, 2022-06-24, https://doi.org/10.13544/j.cnki.jeg.2021-0737.
    李建国, 汪稔, 虞海珍, 等. 2005. 初始主应力方向对钙质砂动力特性影响的试验研究[J]. 岩土力学, 26 (5): 723-727. doi: 10.3969/j.issn.1000-7598.2005.05.009
    李腾, 方祥位, 申春妮, 等. 2019. 珊瑚砂动力特性研究进展[J]. 海洋湖沼通报, (5): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB201905011.htm
    梁珂, 陈国兴, 杭天柱, 等. 2020a. 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 41 (6): 1963-1970, 1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
    梁珂, 陈国兴, 刘抗, 等. 2020b. 饱和珊瑚砂最大动剪切模量的循环加载衰退特性及预测模型[J]. 岩土力学, 41 (2): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002032.htm
    梁珂, 何杨, 陈国兴. 2020c. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 41 (1): 23-31, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm
    林澜, 李飒, 孙立强, 等. 2020. 基于动力触探的钙质土相对密实度研究[J]. 岩土力学, 41 (8): 2730-2738. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008025.htm
    刘崇权, 汪稔. 1998. 钙质砂物理力学性质初探[J]. 岩土力学, 19 (1): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
    刘崇权, 杨志强, 汪稔. 1995. 钙质土力学性质研究现状与进展[J]. 岩土力学, 16 (4): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX504.010.htm
    刘鑫, 李飒, 刘小龙, 等. 2019. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 41 (9): 1773-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm
    马登辉, 姚华彦, 王新志, 等. 2021. 珊瑚砂颗粒形状特征分析[J]. 工程地质学报, 29 (5): 1542-1549. doi: 10.13544/j.cnki.jeg.2021-0300
    任玉宾, 王胤, 杨庆. 2018. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 39 (2): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802011.htm
    孙宗勋. 2000. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋学报, 19 (2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200002000.htm
    汤连生. 2001. 从粒间吸力特性再认识非饱和土抗剪强度理论[J]. 岩土工程学报, 23 (4): 412-417. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201041.htm
    汪稔, 吴文娟. 2019. 珊瑚礁岩土工程地质的探索与研究——从事珊瑚礁研究30年[J]. 工程地质学报, 27 (1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    王刚, 殷浩, 郑含辉, 等. 2021. 钙质砂与硅质砂液化特性对比试验研究[J]. 工程地质学报, 29 (1): 69-76. doi: 10.13544/j.cnki.jeg.2020-624
    王海东, 翁芬芬, 蔡长丰. 2019. 含水率与粒径对非饱和砂土动力特性影响的试验研究[J]. 铁道科学与工程学报, 16 (2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201902011.htm
    文哲, 段志刚, 李守定, 等. 2020. 中国南海岛礁吹填珊瑚砂剪切力学特性[J]. 工程地质学报, 28 (1): 77-84. doi: 10.13544/j.cnki.jeg.2019-243
    吴琪, 杨铮涛, 刘抗, 等. 2022. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究[J]. 岩土工程学报, 44 (8): 1386-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202208003.htm
    吴杨, 崔杰, 李晨, 等. 2022. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究[J]. 岩石力学与工程学报, 41 (1): 205-215. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201017.htm
    余玮平, 顾琳琳, 王振, 等. 2021. 钙质砂颗粒破碎对临界状态影响的试验研究[J]. 工程地质学报, 29 (5): 1276-1285. doi: 10.13544/j.cnki.jeg.2021-0477
    张斌, 柴寿喜, 魏厚振, 等. 2020. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 28 (1): 85-93. doi: 10.13544/j.cnki.jeg.2019-016
    赵焕庭, 温孝胜, 孙宗勋, 等. 1996. 南沙群岛珊瑚礁自然特征[J]. 海洋学报, 18 (5): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC605.006.htm
    朱长歧, 周斌, 刘海峰. 2015. 南海海滩岩的细观结构及其基本物理力学性质研究[J]. 岩石力学与工程学报, 34 (4): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504004.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  9
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2023-02-07
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回