基于实景三维的天-空-地-内滑坡协同观测

许强 董秀军 朱星 邓博 戴可人

许强, 董秀军, 朱星, 等. 2023. 基于实景三维的天-空-地-内滑坡协同观测[J]. 工程地质学报, 31(3): 706-717. doi: 10. 13544/j.cnki.jeg.2023-0005
引用本文: 许强, 董秀军, 朱星, 等. 2023. 基于实景三维的天-空-地-内滑坡协同观测[J]. 工程地质学报, 31(3): 706-717. doi: 10. 13544/j.cnki.jeg.2023-0005
Xu Qiang, Dong Xiujun, Zhu Xing, et al. 2023. Landslide collaborative observation technology based on real scene 3D view from Space-Air-Ground-Interior perspective[J]. Journal of Engineering Geology, 31(3): 706-717. doi: 10.13544/j.cnki.jeg.2023-0005
Citation: Xu Qiang, Dong Xiujun, Zhu Xing, et al. 2023. Landslide collaborative observation technology based on real scene 3D view from Space-Air-Ground-Interior perspective[J]. Journal of Engineering Geology, 31(3): 706-717. doi: 10.13544/j.cnki.jeg.2023-0005

基于实景三维的天-空-地-内滑坡协同观测

doi: 10.13544/j.cnki.jeg.2023-0005
基金项目: 

国家重点研发计划 2022YFC3003200

自然科学基金项目 41941019

详细信息
    通讯作者:

    许强(1968-),男,博士,教授,主要从事地质灾害防治的理论与方法研究. E-mail: xq@cdut.edu.cn

  • 中图分类号: P237

LANDSLIDE COLLABORATIVE OBSERVATION TECHNOLOGY BASED ON REAL SCENE 3D VIEW FROM SPACE-AIR-GROUND-INTERIOR PERSPECTIVE

Funds: 

the National Key Research and Development Program 2022YFC3003200

the Natural Science Foundation of China 41941019

  • 摘要: 实景三维是对人类生产、生活和生态空间进行真实、立体、时序化反映和表达的数字虚拟空间。我国的地质灾害点多面广,“点面双控”是今后防灾减灾的重要举措。如何有效获取广域尺度的地质体的动态变化信息以及重大地质灾害点的精细化地质信息,是实现“点面双控”的重要途径。本文在地质灾害隐患识别“三查”体系的基础上,提出进一步构建天-空-地-内滑坡协同观测体系,实现对地上+地下、水上+水下、室内+室外、致灾体+承灾体的全空间、全要素的动态观测和精细感知,以进一步提升我国地质灾害防治能力和水平。除构建天-空-地-内滑坡协同观测体系外,本文重点介绍了高分辨率贴近摄影测量技术、基于多波束测深的水下地形快速测绘技术、基于SLAM的建构筑物和洞穴等封闭空间形态快速精细化测绘技术。
  • 图  1  基于实景三维的天-空-地-内滑坡协同观测体系

    Figure  1.  Collaborative observation system of "Space-Air-Ground-Internal" for landslide based on real scene 3D view

    图  2  采用贴近摄影测量获取的精细化地质体影像

    a. 贴近摄影测量获取的某库岸三维实景模型(红色框范围为图 2b;黄色框范围为图 2c;蓝色框范围为图 2d);b. 危岩体三维影像;c. 山体裂缝三维影像;d. 滑坡堆积区的碎块石三维影像

    Figure  2.  Refined geological body images obtained by Nap-of-the-Object photogrammetry

    图  3  岩体节理裂隙的自动提取与统计分析

    a. 自动提取岩体的同组结构面;b. 自动生成的极点密度图

    Figure  3.  Automatic extraction and statistical analysis of joints and fissures in rock mass

    图  4  基于实景三维的滑坡物联感知与监测预警架构

    Figure  4.  Schematic diagram of monitoring and early-warning techniques of landslide based on real scene 3D view

    图  5  水上水下一体化探测技术

    a. 同时搭载三维激光扫描和多波束测深仪的船只;b. 利用多波束测深仪测得的某库区水下地形

    Figure  5.  Integrated detection technology on the water and underwater

    图  6  激光SLAM扫描建构筑物点云数据

    a. 建构筑物外围轮廓;b. 建构筑物室内测量

    Figure  6.  Point cloud data of buildings scanned by laser SLAM

    图  7  基于激光SLAM点云数据的建构筑物三维精细化建模

    a. 建构筑物室外三维模型;b. 建构筑物室内精细化模型

    Figure  7.  3D refined modeling of buildings based on laser SLAM point cloud data

  • Chen J H, Zhang Z J, Xu W J, et al. 2021. Quantitative method of shape parameters of mineral particles based on image processing[J]. Journal of Engineering Geology, 29 (1): 59-68.
    Chen J P. 2001.3-D net work numerical modeling technique for random discontinuities of rock mass[J]. Chinese Journal of Geotechnical Engineering, 21 (4): 397-402. doi: 10.3321/j.issn:1000-4548.2001.04.003
    Dai K R, Zhuo G C, Xu Q, et al. 2019. Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide, Gansu Province with radar interferometry[J]. Gcomatics and Information Science of Wuhan University, 44 (12): 1778-1786, 1796.
    Dewez T J B, Leroux J, Morelli S. 2016. Cliff collapse hazard from repeated multicopter uav acquisitions: return on experience[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41 : 805-811.
    Dong X J, Xu Q, She J X, et al. 2020. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Gcomatics and Information Science of Wuhan University, 45 (3): 432-441.
    Dong X J. 2015. Research of comprehensive application of three-dimensional image technology in Geologic engineering[D]. Chengdu: Chengdu University of Technology.
    Ge D Q, Dai K R, Guo Z C, et al. 2019. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Gcomatics and Information Science of Wuhan University, 44 (7): 949-956.
    Ge D Q. 2018. Comprehensive remote sensing application in early identification, monitoring and early warning of geological hazards[J]. City and Disaster Reduction, (6): 53-60.
    Gong J H, Zhao Z M. 2008. Sichuan Wenchuan earthquake emergency UAV remote sensing information acquisition and application[J]. Urban Development Research, (3): 31-32, 42.
    Guo C, Xu Q, Peng S Q, et al. 2020. Application research of UAV photogrammetry technology in the emergency rescue of Baige landslide[J]. Journal of Catastrophology, 35 (1): 203-210.
    Guo Q H, Hu T Y, Liu J, et al. 2021. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications[J]. Progress in Geography, 40 (9): 1550-1569. doi: 10.18306/dlkxjz.2021.09.010
    He J N. 2019. Nap-of-the-object photogrammetryand its key techniques[D]. Wuhan: Wuhan University.
    Ju Y Z. 2017. Early recognition of loess landslide based on UAV photogrammetry——A case study of Heifang terrace[D]. Chengdu: Chengdu University of Technology.
    Li C X, Hou X X, Wang Y, et al. 2022. Application of multi-beam sounding system and side scan sonarin sedimentation survey in front of dam of hydropower station[J]. Electric Power Survey Design, (2): 84-88.
    Li Z H, Song C, Yu C, et al. 2019. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 44 (7): 967-979.
    Lin B Q. 2022. Discussion on the application of slam three-dimensional laser scanning technology in goaf measurement[J]. Technology Innovation and Productivity, (4): 65-67.
    Lin Y, Li Y, Liu J T. 2021. Comprehensive application of multi-beam bathymetry system and side-scan sonar in port sea-sweeping survey[J]. Journal of Ocean Technology, 40 (6): 46-53.
    Lu H Y, Li W L, Xu Q, et al. 2019. Early detection of landslides in the upstream and down stream areas of the Baige landslide, the Jinsha River Based on optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 44 (9): 1342-1354.
    Lucieer A, Jong S M, Turner D. 2014. Mapping landslide displacements using Structure from Motion(SfM) and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 38 (1): 97-116. doi: 10.1177/0309133313515293
    Peng D L, Xu Q, Dong X J, et al. 2017. Accurate and efficient method for loess landslide fine mapping with high resolution close-range Photogrammetry[J]. Journal of Engineering Geology, 25 (2): 424-435.
    Peng S Q, Xu Q, Li H J, et al. 2019. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology, 27 (6): 1290-1301.
    Perissin D, Wang Z Y, Lin H. 2012. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 73 : 58-67. doi: 10.1016/j.isprsjprs.2012.07.002
    Qi S P, Li Y Z. 2019. A review of the development and current situation of marine environment observation technology and instruments[J]. Shandong Science, 32 (5): 21-30.
    Sacco G L S, Ferrero C, Calderini C, et al. 2022. Effect of slow-moving landslides on a vaulted masonry building: The case of San Carlo Borromeo church in Cassingheno(Genova)[M]//Geotechnical Engineering for the Preservation of Monuments and Historic Sites Ⅲ. Boca Raton: CRC Press: 607-618.
    Scaioni M, Longoni L, Melillo V, et al. 2014. Remote sensing for landslide investigations: An overview of recent achievements and perspectives[J]. Remote Sensing, 6 (10): 9600-9652. doi: 10.3390/rs6109600
    Smith R, Self M, Cheeseman P. 1988. Estimating uncertain spatial relationships in robotics[M]//Machine Intelligence and Pattern Recognition, 5 : 435-461.
    Sun W W, Yang G, Chen C, et al. 2020. Development status and literature analysis of China's earth observation remote sensing satellites[J]. Journal of Remote Sensing, 24 (5): 479-510.
    Tie Y B, Xu W, Xiang B L, et al. 2022. The thoughts on construction of "double-control of point and zonesystem of geological hazard risk in southwest China[J]. The Chinese Journal of Geological Hazard and Control, 33 (3): 106-113.
    Wang M H, Chu Z W, Zheng Y, et al. 2017. Study on underground space measurement method basedon 3D SLAM mobile scanning technology[J]. Urban Geotechnical Investigation & Surveying, (3): 119-123. doi: 10.3969/j.issn.1672-8262.2017.03.034
    Wang W, Wang C Y. 2021. Thoughts on real scene three-dimensional China construction layout and realization path[J]. Geomatics & Spatial Information Technology, 44 (7): 6-8, 14. doi: 10.3969/j.issn.1672-5867.2021.07.002
    Wang X, Pan H Z, Luo S, et al. 2019. Bathymetric technology and research status of airborne lidar[J]. Hydrographic Surveying and Charting, 39 (5): 78-82. doi: 10.3969/j.issn.1671-3044.2019.05.019
    Wu F Q, Qi S W. 2014. Statistical mechanics on the structure effects of rock masses[J]. Journal of Engineering Geology, 22 (4): 601-609.
    Wu X H, Ma H T, Zhang J. 2019. Development status and application of ground-based synthetic aperture radar[J]. Geomatics and Information Science of Wuhan University, 44 (7): 1073-1081.
    Xu Q, Dong X J, Li W L. 2019. Integrated space-air ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 44 (7): 957-966.
    Xu Q, Lu H Y, Li W L, et al. 2022a. Types of landslide hazards and corresponding identification methods[J]. Geomatics and Information Science of Wuhan University, 47 (3): 377-387.
    Xu Q, Zhu X, Li W L, et al. 2022b. Technical progress of space air ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 51 (7): 1416-1436.
    Xu Q, Guo C, Dong X J. 2022c. Application status and prospect of aerial remote sensing technology forgeohazards[J]. Journal of Surveying and Mapping, 51 (10): 2022-2033.
    Xu Q. 2018. Building a new "three investigation" system and innovating a new mechanism for disaster prevention and control[N]. China Mining News, 2018-03-12
    Xu Q. 2020a. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 45 (11): 1651-1659.
    Xu Q. 2020b. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 28 (2): 360-374.
    Yan G Q, Huang B L, Wang X, et al. 2021. Sliding bending failure mechanism and evaluation of bedding limestone bank slope based on rock mass deterioration in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 29 (3): 668-679.
    Yan S. 2019. The birth of the third photogrammetry method[N]. China Natural Resources News, 2019-11-11(005)
    Yao X, Zhang L Q, Li L J, et al. 2021. InSAR observing the regional crustal stability of engineering sites[J]. Journal of Engineering Geology, 29 (1): 104-115.
    Yin Y P. 2001. A review and vision of geological hazards in China[J]. Land and Resources Science and Technology Management, (3): 26-29.
    Zhang F, Huang X F, Gao Y L, et al. 2021. Interpretation and reflection on technology outline of national 3D real scene(2021 Edition)[J]. Journal of Geomatics, 46 (6): 171-174.
    Zhang L, Liao M S, Dong J, et al. 2018. Early detection of landslide hazards in mountainous areas of west China using time series SAR Interferometry-A case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 43 (12): 2039-2049.
    Zhao C Y, Liu X J, Zhang Q, et al. 2019. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 44 (7): 996-1007.
    Zhao H B, Xu X S, Wu Y Z. 2001. Prospects for the development of multi-beam strip bathymetry technology[J]. Journal of Harbin Engineering University, (2): 41-45, 1.
    Zhu S N, Yin Y P, Huang B L, et al. 2021. Deformation characteristics and instability mechanism of large monoclinal layered neogenic bedrock landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 29 (3): 657-667.
    陈建湟, 张中俭, 徐文杰, 等. 2021. 基于数字图像处理的矿物颗粒形态定量分析[J]. 工程地质学报, 29 (1): 59-68. doi: 10.13544/j.cnki.jeg.2021-0003
    陈剑平. 2001. 岩体随机不连续面三维网络数值模拟技术[J]. 岩土工程学报, 21 (4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104002.htm
    戴可人, 卓冠晨, 许强, 等. 2019. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 44 (12): 1778-1786, 1796. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912006.htm
    董秀军, 许强, 佘金星, 等. 2020. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 45 (3): 432-441. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202003015.htm
    董秀军. 2015. 三维空间影像技术在地质工程中的综合应用研究[D]. 成都: 成都理工大学.
    葛大庆, 戴可人, 郭兆成, 等. 2019. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 44 (7): 949-956. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907001.htm
    葛大庆. 2018. 地质灾害早期识别与监测预警中的综合遥感应用[J]. 城市与减灾, (6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201806011.htm
    龚建华, 赵忠明. 2008. 四川汶川地震应急无人机遥感信息获取与应用[J]. 城市发展研究, (3): 31-32, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-CSFY200803014.htm
    郭晨, 许强, 彭双麒, 等. 2020. 无人机摄影测量技术在金沙江白格滑坡应急抢险中的应用[J]. 灾害学, 35 (1): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202001041.htm
    郭庆华, 胡天宇, 刘瑾, 等. 2021. 轻小型无人机遥感及其行业应用进展[J]. 地理科学进展, 40 (9): 1550-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109011.htm
    何佳男. 2019. 贴近摄影测量及其关键技术研究[D]. 武汉: 武汉大学.
    巨袁臻. 2017. 基于无人机摄影测量技术的黄土滑坡早期识别研究[D]. 成都: 成都理工大学.
    李成旭, 侯欣欣, 王月, 等. 2022. 多波束测深系统与侧扫声呐在水电站坝前淤积测量中的应用[J]. 电力勘测设计, (2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKC202202015.htm
    李振洪, 宋闯, 余琛, 等. 2019. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 44 (7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
    林宝琪. 2022. SLAM三维激光扫描技术在采空区测量中的应用探讨[J]. 科技创新与生产力, (4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TAIY202204019.htm
    蔺岩, 李芸, 刘军廷. 2021. 多波束测深系统和侧扫声呐在港口扫海测量中综合应用[J]. 海洋技术学报, 40 (6): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS202106007.htm
    陆会燕, 李为乐, 许强, 等. 2019. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 44 (9): 1342-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201909011.htm
    彭大雷, 许强, 董秀军, 等. 2017. 基于高精度低空摄影测量的黄土滑坡精细测绘[J]. 工程地质学报, 25 (2): 424-435. doi: 10.13544/j.cnki.jeg.2017.02.021
    彭双麒, 许强, 李骅锦, 等. 2019. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报, 27 (6): 1290-1301. doi: 10.13544/j.cnki.jeg.2018-305
    漆随平, 厉运周. 2019. 海洋环境监测技术及仪器装备的发展现状与趋势[J]. 山东科学, 32 (5): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKX201905005.htm
    孙伟伟, 杨刚, 陈超, 等. 2020. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 24 (5): 479-510. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202005001.htm
    铁永波, 徐伟, 向炳霖, 等. 2022. 西南地区地质灾害风险"点面双控"体系构建与思考[J]. 中国地质灾害与防治学报, 33 (3): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202203012.htm
    王孟和, 储征伟, 郑勇, 等. 2017. 基于3DSLAM移动扫描技术的地下空间测量方法研究[J]. 城市勘测, (3): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-CSKC201703028.htm
    王维, 王晨阳. 2021. 实景三维中国建设布局与实现路径思考[J]. 测绘与空间地理信息, 44 (7): 6-8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202107002.htm
    王鑫, 潘华志, 罗胜, 等. 2019. 机载激光雷达测深技术研究与进展[J]. 海洋测绘, 39 (5): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201905020.htm
    吴星辉, 马海涛, 张杰. 2019. 地基合成孔径雷达的发展现状及应用[J]. 武汉大学学报(信息科学版), 44 (7): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm
    伍法权, 祁生文. 2014. 岩体结构力学效应的统计岩体力学研究[J]. 工程地质学报, 22 (4): 601-609. doi: 10.13544/j.cnki.jeg.2014.04.006
    许强, 董秀军, 李为乐. 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 44 (7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm
    许强, 陆会燕, 李为乐, 等. 2022a. 滑坡隐患类型与对应识别方法[J]. 武汉大学学报(信息科学版), 47 (3): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202203007.htm
    许强, 朱星, 李为乐, 等. 2022b. "天-空-地"协同滑坡监测技术进展[J]. 测绘学报, 51 (7): 1416-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202207026.htm
    许强, 郭晨, 董秀军. 2022c. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 51 (10): 2022-2033. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202210003.htm
    许强. 2018. 构建新"三查"体系, 创新地灾防治新机制[N]. 中国矿业报, 2018-03-12
    许强. 2020a. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报·信息科学版, 45 (11): 1651-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011001.htm
    许强. 2020b. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 28 (2): 360-374. doi: 10.13544/j.cnki.jeg.2020-025
    闫国强, 黄波林, 王勋, 等. 2021. 基于岩体劣化顺层灰岩岸坡滑移-弯曲失稳机理和评价[J]. 工程地质学报, 29 (3): 668-679. doi: 10.13544/j.cnki.jeg.2021-0173
    言司. 2019. 第3种摄影测量方式的诞生[N]. 中国自然资源报, 2019-11-11(005)
    姚鑫, 张路青, 李凌婧, 等. 2021. 工程场址区域地壳稳定性InSAR评价研究[J]. 工程地质学报, 29 (1): 104-115. doi: 10.13544/j.cnki.jeg.2017-153
    殷跃平. 2001. 中国地质灾害减灾回顾与展望——从国际减灾十年到国际减灾战略[J]. 国土资源科技管理, (3): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKG200103007.htm
    张帆, 黄先锋, 高云龙, 等. 2021. 实景三维中国建设技术大纲(2021版)解读与思考[J]. 测绘地理信息, 46 (6): 171-174. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202106038.htm
    张路, 廖明生, 董杰, 等. 2018. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报·信息科学版, 43 (12): 2039-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812031.htm
    赵超英, 刘晓杰, 张勤, 等. 2019. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 44 (7): 996-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907005.htm
    赵会滨, 徐新盛, 吴英姿. 2001. 多波束条带测深技术发展动态展望[J]. 哈尔滨工程大学学报, (2): 41-45, 1. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200102010.htm
    朱赛楠, 殷跃平, 黄波林, 等. 2021. 三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究[J]. 工程地质学报, 29 (3): 657-667. doi: 10.13544/j.cnki.jeg.2021-0178
  • 加载中
图(7)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  138
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 修回日期:  2023-03-28
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回