DISTRIBUTION AND HAZARD ASSESSMENT OF COLLAPSES AND LANDSLIDES IN SICHUAN-TIBET TRAFFIC CORRIDOR
-
摘要: 川藏交通廊道雅安到林芝段位于青藏高原东南部,沿线地质条件复杂、河流切割强烈、地质环境脆弱、新构造运动活跃,具有山高谷深、坡体稳定性差等特点,是我国崩滑灾害最发育、危害最严重的地区之一。为了保障廊道内相关工程的顺利建设和后期安全运营,本文以线路两侧一级分水岭为界,通过遥感解译和野外调查,获得川藏交通廊道雅安—林芝段崩滑灾害共4509处,在此基础上,选取高程、坡度、坡向、工程地质岩组、断裂、水系、公路、地震动峰值加速度、降雨共9个因子分析了灾害的空间分布规律及发育特征,建立了频率比法与逻辑回归方法耦合模型,并运用到高原山区重大交通廊道崩滑灾害危险性评价中。研究结果表明:(1)廊道沿线各县区段的崩滑灾害面密度在空间上总体呈从西向东递减的趋势。(2)有利于灾害发生的条件分别是:高程1~4 km,坡度大于20°,S、SW和W坡向,较软弱、较坚硬和坚硬岩组,距断裂6.4 km范围内,距水系3.2 km范围内,距公路800 m范围内,地震动峰值加速度0.20g,年均降雨量大于1100 mm。(3)将研究区危险性等级划分为极低危险(18.64%)、低危险(26.18%)、中等危险(24.75%)、高危险(19.82%)、极高危险(10.61%)5级,其中:极高危险区与高危险区主要分布在断裂附近和坡度较陡的区域。(4)耦合模型的AUC值达到了0.737,优于单一的频率比模型的0.712,表明耦合模型的评价结果具有更高的精度。该研究可为川藏交通廊道雅安到林芝段相关工程的规划、建设和未来运营过程中的防灾减灾工作提供重要参考。Abstract: The Ya'an to Nyingchi section of the Sichuan-Tibet traffic corridor is located in the southeast of the Qinghai-Tibet Plateau. The project region is characterized by complex geological conditions,strong river cutting,fragile geological environment,active neotectonic movement,high mountains,deep valleys and poor slope stability. It is one of the areas with the most developed and serious hazards of collapses and landslides in China. In order to guarantee the smooth construction and safe operation of the related project in the corridor,this study takes the first order watershed on both sides of the line as the boundary,and obtains a total of 4509 collapses and landslides in the Ya'an-Nyingchi section of the Sichuan-Tibet traffic corridor through remote sensing interpretation and field investigation. On this basis,a total of nine factors,including elevation,slope,aspect,engineering geological strata,fault,river,road,peak ground acceleration and rainfall are selected to analyze the spatial distribution law and development characteristics of disasters. Then it establishes a coupling model of frequency ratio method and logistic regression method to evaluate the hazard of collapses and landslides for the major traffic corridor project in plateau mountainous area. The study results show that: (1)The areal density of collapses and landslides in various counties along the corridor shows a spatial decreasing trend from west to east. (2)The conditions conducive to disasters occurrence include elevation of 1~4 km,slope gradient steeper than 20°,aspects of S,SW and W,rock groups of soft,hard and very hard,within 6.4 km of fault,within 3.2 km of river,within 800 m of road,peak ground acceleration of 0.20g and average annual rainfall more than 1100 mm. (3)The hazard of study area is divided into five grades: very low hazard(18.64%),low hazard(26.18%),medium hazard(24.75%),high hazard(19.82%),and very high hazard(10.61%),where the very high hazard and high hazard areas are mainly distributed near the faults and in the areas with steep slopes. (4)The AUC value of the coupling model reaches 0.737,which is better than that of the single frequency ratio model 0.712,indicating that the evaluation result of the coupling model has higher accuracy. This study can provide an important reference for disaster prevention and mitigation in the planning,construction and future operation of the related project in Sichuan-Tibet traffic corridor.
-
表 1 崩滑灾害面积分级表
Table 1. Collapses and landslides areas classification table
区间序号 面积间隔/m2 分布数量 数量占比/% 1 0~4000 1141 25.30 2 4000~8000 490 10.87 3 8000~16 000 488 10.82 4 16 000~32 000 473 10.49 5 32 000~64 000 507 11.24 6 64 000~128 000 468 10.38 7 128 000~256 000 462 10.25 8 256 000~10 000 000 480 10.65 表 2 评价因子频率比值和逻辑回归系数
Table 2. Frequency ratios and logistic regression coefficients of evaluation factors
评价因子 评价因子分级 频率比值 逻辑回归值 评价因子 评价因子分级 频率比值 逻辑回归值 高程/km 0~1 0.099 513 0.182 断裂/km 1.6~3.2 1.117 782 1.625 1~2 1.294 765 3.2~6.4 1.156 547 2~3 3.044 810 >6.4 0.882 970 3~4 1.676 706 水系/km 0~0.1 2.175 885 0.113 4~5 0.546 705 0.1~0.2 2.240 270 >5 0.238 032 0.2~0.4 2.430 123 坡度/(°) 0~10 0.437 014 1.338 0.4~0.8 2.415 046 10~20 0.697 578 0.8~1.6 2.075 301 20~30 1.007 597 1.6~3.2 1.474 384 30~40 1.289 215 3.2~6.4 0.679 401 40~50 1.509 384 >6.4 0.703 158 50~60 1.618 704 公路/km 0~0.1 1.286 178 0.840 >60 1.200 644 0.1~0.2 1.330 870 坡向 N 0.869 929 0.800 0.2~0.4 1.378 071 NE 0.969 153 0.4~0.8 1.215 726 E 0.832 112 0.8~1.6 0.933 685 SE 0.919 386 >1.6 0.513 087 S 1.076 432 地震动峰值加速度/g 0.10 0.426 318 0.714 SW 1.300 944 0.15 0.992 657 W 1.090 187 0.20 1.151 243 NW 0.873 002 0.30 0.925 663 工程地质岩组 松散 0.376 222 0.810 0.40 0.415 765 软弱 0.765 289 降雨/mm 500~700 0.979 200 0.561 较软弱 1.055 680 700~900 0.395 575 较坚硬 1.037 374 900~1100 0.661 034 坚硬 1.169 619 1100~1300 1.712 429 断裂/km 0~0.1 1.421 980 1.625 1300~1500 1.267 445 0.1~0.2 1.423 288 1500~1700 1.048 042 0.2~0.4 1.459 324 1700~1900 1.516 610 0.4~0.8 1.315 031 >1900 2.240 799 0.8~1.6 1.050 521 表 3 危险性分区面积及比例
Table 3. Areas and ratios of different hazard zones
危险性分区 面积/km2 占比/% 极高 2838.00 10.61 高 5299.75 19.82 中等 6619.82 24.75 低 7000.21 26.18 极低 4985.33 18.64 -
Bian J H, Li X Z, Xu R C, et al. 2021. Hazard zonation of large-scale landslides along Sichuan-Tibet Railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control, 32 (2): 84-93. Bourenane H, Guettouche M S, Bouhadad Y, et al. 2016. Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods[J]. Arabian Journal of Geosciences, 9: 154. doi: 10.1007/s12517-015-2222-8 Cui P, Ge Y G, Li S J, et al. 2022. Scientific challenges in disaster risk reduction for the Sichuan-Tibet Railway[J]. Engineering Geology, 309: 106837. doi: 10.1016/j.enggeo.2022.106837 Du G L, Yang Z H, Yuan Y, et al. 2021. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 48 (5): 102-111. Fang R K, Liu Y H, Huang Z Q. 2021. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 32 (4): 1-8. Feng W, Tang Y M, Hong B. 2022. Landslide hazard assessment methods along fault zones based on multiple working conditions: A case study of the Lixian-Luojiabu fault zone in Gansu Province(China)[J]. Sustainability, 14(13): 8098. doi: 10.3390/su14138098 Gao H X. 2010. Overview on landslide risk zoning and prediction research[J]. Journal of Catastrophology, 25 (2): 124-128. doi: 10.3969/j.issn.1000-811X.2010.02.025 Guo C B, David R M, Zhang Y S, et al. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geomorphology, 248 : 93-110. doi: 10.1016/j.geomorph.2015.07.012 Guo C B, Wu R A, Jiang L W, et al. 2021. Typical geohazards and engineering geological problems along the Ya'an-Linzhi section of the Sichuan-Tibet Railway, China[J]. Geoscience, 35 (1): 1-17. doi: 10.3969/j.issn.1672-0636.2021.01.001 Guo C B, Zhang Y S, Jiang L W, et al. 2017. Discussion on the environmental and engineering geological problems along the Sichuan-Tibet Railway and its adjacent area[J]. Geoscience, 35 (5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001 Hu R L, Fan L F, Wang S S, et al. 2013. Theory and method for landslide risk assessment-current status and future development[J]. Journal of Engineering Geology, 21 (1): 76-84. doi: 10.3969/j.issn.1004-9665.2013.01.009 Huang R Q. 1994. Full-course simulation of hazardous rockfalls and avalanches[J]. The Chinese Journal of Geological Hazard and Control, 5 (S1): 11-17, 29. Lan H X, Zhang N, Li L P, et al. 2021. Risk analysis of major engineering geological hazards for Sichuan-Tibet Railway in the phase of feasibility study[J]. Journal of Engineering Geology, 29 (2): 326-341. Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides, 4 : 33-41. doi: 10.1007/s10346-006-0047-y Li L P, Lan H X, Guo C B, et al. 2017. Geohazard susceptibility assessment along the Sichuan-Tibet Railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 31 (5): 911-929. doi: 10.3969/j.issn.1000-8527.2017.05.004 Li X P, Li Y F, Zhou X H, et al. 2017. Evaluation of regional geological hazards risks on Kangding to Changdu section of Sichuan-Tibet Railway[J]. Railway Standard Design, 61 (6): 58-62. Li X Z, Cui Y, Zhang X G, et al. 2019. Characteristics and spatial distribution of landslides and collapses in the Kangding-Qamdo section of the proposed Sichuan-Tibet Railway[J]. Acta Geologica Sichuan, 39 (3): 441-446. doi: 10.3969/j.issn.1006-0995.2019.03.019 Liu J, Wu Z. 2020. Landslide risk assessment of the Zhouqu-Wudu section of Bailong River Basin based on geographic information system[J]. China Earthquake Engineering Journal, 42 (6): 1723-1734. doi: 10.3969/j.issn.1000-0844.2020.06.1723 Liu X L, Miao C. 2018. Large-scale assessment of landslide hazard, vulnerability and risk in China[J]. Geomatics, Natural Hazards and Risk, 9 (1): 1037-1052. doi: 10.1080/19475705.2018.1502690 Luo L G, Pei X J, Huang R Q, et al. 2021. Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology, 29 (2): 526-535. Ma S Y, Xu C, Tian Y Y, et al. 2019. Application of logistic regression model for hazard of earthquake-triggered landslides: a case study of 2017 Jiuzhaigou(China)MS7.0 event[J]. Seismology and Geology, 41 (1): 162-177. doi: 10.3969/j.issn.0253-4967.2019.01.011 Ma Z H. 2014. Hazard assessment of geological disasters in Taibai Temple gold fields, Zhen'an County, Shaanxi Province[D]. Xi'an: Northwest University. National Standards Writing Group of the People's Republic of China. 2014. Standard for engineering classification of rock mass(GB/T 50218-2014)[S]. Beijing: China Planning Press. Pan G T, Ren F, Yin F G, et al. 2020. Key zones of oceanic plate geology and Sichuan-Tibet Railway project[J]. Earth Science, 45 (7): 2293-2304. Pan G T, Wang L Q, Zhang W P, et al. 2013. Geotectonic map and description of the Qinghai-Tibet Plateau and adjacent areas[M]. Beijing: Geological Publishing House. Peng J B, Cui P, Zhuang J Q. 2020. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39 (12): 2377-2389. Peng J B, Ma R Y, Lu Q Z, et al. 2004. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advances in Earth Science, (3): 457-466. doi: 10.3321/j.issn:1001-8166.2004.03.018 Pradhan B, Youssef A M. 2010. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models[J]. Arabian Journal of Geosciences, 3 : 319-326. doi: 10.1007/s12517-009-0089-2 Qi H L. 2008. Research on assessment and countermeasures of geological hazards of highway roadbed[D]. Xi'an: Chang'an University. Qi S W, Li Y C, Song S H, et al. 2022. Regionalization of engineering geological stability and distribution of engineering disturbance disasters in Tibetan Plateau[J]. Journal of Engineering Geology, 30 (3): 599-608. Qi S W, Xu Q, Lan H X, et al. 2010. Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China[J]. Engineering Geology, 116(1-2): 95-108. doi: 10.1016/j.enggeo.2010.07.011 Qiao J P, Wang M. 2010. Types and hierarchical knowledge of landslide risks[J]. Journal of Engineering Geology, 18 (1): 84-90. doi: 10.3969/j.issn.1004-9665.2010.01.012 Tong L Q, Qi S W, An G Y, et al. 2013. Remote sensing investigation of significant geological hazards in the Himalayan region[M]. Beijing: Science Press. Wang J F, Chen B, Li T B, et al. 2022. Application of IAHP-GRA model in landslide risk analysis[J]. Mining Research and Development, 42 (7): 108-113. Wu C R, Jiao Y M, Wang J L, et al. 2021. Frequency ratio and logistic regression models based coupling analysis for susceptibility of landslide in Shuangbai County[J]. Journal of Natural Disasters, 30 (4): 213-224. Wu C H, Cui P, Li Y S, et al. 2021. Tectonic damage of crustal rock mass around active faults and its conceptual model at eastern margin of Tibetan Plateau[J]. Journal of Engineering Geology, 29 (2): 289-306. Wu X Q, Lai C G, Chen X H, et al. 2017. A landslide hazard assessment based on random forest weight: A case study in the Dongjiang River Basin[J]. Journal of Natural Disasters, 26 (5): 119-129. Xu C. 2012. Distribution law and risk assessment for Wenchuan earthquake-triggered landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 31(2): 432. doi: 10.3969/j.issn.1000-6915.2012.02.024 Xu C, Dai F C, Chen J, et al. 2009. Remote sensing detailed interpretation of secondary geological hazards in the hardest hit areas of Wenchuan MS8.0 earthquake[J]. Journal of Remote Sensing, 13 (4): 754-762. Xu C, Dai F C, Yao X, et al. 2009. GIS-based landslide susceptibility assessment analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (S2): 3978-3985. Xu R C, Li X Z, Hu K H, et al. 2019. A dynamic hazard assessment for mountain hazards in Hengduan Mountain Area[J]. Journal of Catastrophology, 34 (3): 196-201, 208. doi: 10.3969/j.issn.1000-811X.2019.03.036 Xu Z X, Zhang L G, Jiang L W, et al. 2021. Engineering geological environment and main engineering geological problems of Ya'an-Linzhi section of the Sichuan-Tibet Railway[J]. Advanced Engineering Sciences, 53 (3): 29-42. Xue Q, Zhang M S, Gao B, et al. 2018. Risk assessment of geological hazards in Suide City, Shaanxi Province[J]. Journal of Engineering Geology, 26 (3): 711-719. Xue Y G, Kong F M, Yang W M, et al. 2020. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39 (3): 445-468. Yang K, Xue X C, Duan Z, et al. 2021. Risk assessment of geological hazards in Zichang County based on AHP-LR entropy combined model[J]. Science Technology and Engineering, 21 (27): 11551-11560. doi: 10.3969/j.issn.1671-1815.2021.27.013 Yang Z J, Ding P P, Wang D, et al. 2018. Landslide risk analysis on Sichuan-Tibet Railway(Kangding to Nyingchi section)[J]. Journal of the China Railway Society, 40 (9): 97-103. Yao X L. 2021. Study on the mechanism and susceptibility model of the endogenetic and exogenetic dynamic coupling of the landslide in southeast Tibet[D]. Beijing: University of Chinese Academy of Sciences. Zhang C S, Zhang Y C, Ma Y S. 2003. Regional dangerous on the geological hazards of collapse, landslide and debris flow in the upper reaches of the Yellow River[J]. Journal of Geomechanics, 9 (2): 143-153. Zhao Z, Chen J H, Gan X X, et al. 2022. Risk assessment of landslides in Lushan county based on information value method and support vector machine[J]. Computing Techniques for Geophysical and Geochemical Exploration, 44 (1): 96-101. Zheng S Y, Zhang X J, Yang Y, et al. 2012. The application of analytic hierarchy process to the danger evaluation of collapse and slide in Lujiang Basin segment of Nujiang valley, western Yunnan Province[J]. Geological Bulletin of China, 31 (Z1): 356-365. Zou Y, Qi S W, Guo S F, et al. 2022. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian Earthquake in China[J]. Engineering Geology, 269(2022): 106477. 边江豪, 李秀珍, 徐瑞池, 等. 2021. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J]. 中国地质灾害与防治学报, 32 (2): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202102012.htm 杜国梁, 杨志华, 袁颖, 等. 2021. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 48 (5): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105011.htm 方然可, 刘艳辉, 黄志全. 2021. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报, 32 (4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202104001.htm 高华喜. 2010. 滑坡灾害风险区划与预测研究综述[J]. 灾害学, 25 (2): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201002027.htm 郭长宝, 吴瑞安, 蒋良文, 等. 2021. 川藏铁路雅安-林芝段典型地质灾害与工程地质问题[J]. 现代地质, 35 (1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101002.htm 郭长宝, 张永双, 蒋良文, 等. 2017. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 31 (5): 877-889. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201705001.htm 胡瑞林, 范林峰, 王珊珊, 等. 2013. 滑坡风险评价的理论与方法研究[J]. 工程地质学报, 21 (1): 76-84. http://www.gcdz.org/article/id/11251 黄润秋. 1994. 灾害性崩滑地质过程的全过程模拟[J]. 中国地质灾害与防治学报, 5 (S1): 11-17, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH4S1.001.htm 兰恒星, 张宁, 李郎平, 等. 2021. 川藏铁路可研阶段重大工程地质风险分析[J]. 工程地质学报, 29 (2): 326-341. doi: 10.13544/j.cnki.jeg.2021-0114 李郎平, 兰恒星, 郭长宝, 等. 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 31 (5): 911-929. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201705004.htm 李孝攀, 李远富, 周先虎, 等. 2017. 川藏铁路康定至昌都段地质灾害区域危险性评价[J]. 铁道标准设计, 61 (6): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201706013.htm 李秀珍, 崔云, 张小刚, 等. 2019. 川藏铁路康定至昌都段滑坡崩塌灾害特征及空间分布规律[J]. 四川地质学报, 39 (3): 441-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201903022.htm 刘杰, 武震. 2020. 基于GIS的白龙江流域舟曲-武都段的滑坡危险性评价[J]. 地震工程学报, 42 (6): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006049.htm 罗路广, 裴向军, 黄润秋, 等. 2021. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报, 29 (2): 526-535. doi: 10.13544/j.cnki.jeg.2019-202 马思远, 许冲, 田颖颖, 等. 2019. 基于逻辑回归模型的九寨沟地震滑坡危险性评估[J]. 地震地质, 41 (1): 162-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201901011.htm 马中豪. 2014. 陕西省镇安县太白庙金矿区地质灾害危险性评价研究[D]. 西安: 西北大学. 潘桂棠, 任飞, 尹福光, 等. 2020. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 45 (7): 2293-2304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007007.htm 潘桂棠, 王立全, 张万平, 等. 2013. 青藏高原及邻区大地构造图及说明书[M]. 北京: 地质出版社. 彭建兵, 崔鹏, 庄建琦. 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39 (12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm 彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, (3): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403017.htm 齐洪亮. 2008. 公路路基地质灾害评价及防治对策研究[D]. 西安: 长安大学. 祁生文, 李永超, 宋帅华, 等. 2022. 青藏高原工程地质稳定性分区及工程扰动灾害分布浅析[J]. 工程地质学报, 30 (3): 599-608. doi: 10.13544/j.cnki.jeg.2022-0172 乔建平, 王萌. 2010. 滑坡风险的类型与层次链[J]. 工程地质学报, 18 (1): 84-90. http://www.gcdz.org/article/id/8513 童立强, 祁生文, 安国英, 等. 2013. 喜马拉雅山地区重大地质灾害遥感调查研究[M]. 北京: 科学出版社. 王剑锋, 陈渤, 李天斌, 等. 2022. IAHP-GRA模型在滑坡危险性分析中的应用[J]. 矿业研究与开发, 42 (7): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202207020.htm 吴常润, 角媛梅, 王金亮, 等. 2021. 基于频率比-逻辑回归耦合模型的双柏县滑坡易发性评价[J]. 自然灾害学报, 30 (4): 213-224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202104023.htm 伍纯昊, 崔鹏, 李渝生, 等. 2021. 青藏高原东缘活动断裂带地壳岩体构造损伤特征与模式讨论[J]. 工程地质学报, 29 (2): 289-306. doi: 10.13544/j.cnki.jeg.2021-0075 吴孝情, 赖成光, 陈晓宏, 等. 2017. 基于随机森林权重的滑坡危险性评价: 以东江流域为例[J]. 自然灾害学报, 26 (5): 119-129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201705014.htm 许冲. 2012. 汶川地震滑坡分布规律与危险性评价[J]. 岩石力学与工程学报, 31(2): 432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201202027.htm 许冲, 戴福初, 陈剑, 等. 2009. 汶川MS8.0地震重灾区次生地质灾害遥感精细解译[J]. 遥感学报, 13 (4): 754-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200904031.htm 许冲, 戴福初, 姚鑫, 等. 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28 (S2): 3978-3985. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2104.htm 徐瑞池, 李秀珍, 胡凯衡, 等. 2019. 横断山区山地灾害的动态危险性评价[J]. 灾害学, 34 (3): 196-201, 208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201903037.htm 徐正宣, 张利国, 蒋良文, 等. 2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术, 53 (3): 29-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103005.htm 薛强, 张茂省, 高波, 等. 2018. 陕西省绥德县城区地质灾害风险评估[J]. 工程地质学报, 26 (3): 711-719. doi: 10.13544/j.cnki.jeg.2017-205 薛翊国, 孔凡猛, 杨为民, 等. 2020. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 39 (3): 445-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm 杨康, 薛喜成, 段钊, 等. 2021. 基于AHP-LR熵组合模型的子长市地质灾害危险性评价[J]. 科学技术与工程, 21 (27): 11551-11560. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202127013.htm 杨宗佶, 丁朋朋, 王栋, 等. 2018. 川藏铁路(康定至林芝段)沿线滑坡风险分析[J]. 铁道学报, 40 (9): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809015.htm 姚翔龙. 2021. 藏东南滑坡灾害内外动力耦合作用机理及易发性模型研究[D]. 北京: 中国科学院大学. 张春山, 张业成, 马寅生. 2003. 黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J]. 地质力学学报, 9 (2): 143-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200302007.htm 赵铮, 陈建华, 甘先霞, 等. 2022. 基于信息量法和支持向量机的芦山县滑坡危险性评价[J]. 物探化探计算技术, 44 (1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT202201012.htm 郑师谊, 张绪教, 杨艳, 等. 2012. 层次分析法在滇西怒江河谷潞江盆地段崩塌与滑坡地质灾害危险性评价中的应用[J]. 地质通报, 31 (Z1): 356-365. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1019.htm 中华人民共和国国家标准编写组. 2014. 工程岩体分级标准(GB/T 50218-2014)[S]. 北京: 中国计划出版社. -