FREEZE-THAW DEGRADATION CHARACTERISTICS OF CARBONACEOUS SLATE ROCK SURROUNDING HIGH COLD TUNNEL IN XINJIANG
-
摘要: 围岩冻融损伤劣化加剧了寒区隧道衬砌结构破坏,为探究新疆高寒隧道强风化炭质板岩围岩冻融损伤劣化规律及各向异性特征,制取层理倾角θ=0°、45°、90° 3种板岩试样,在开放饱水的条件下进行了0次、10次、20次、30次、40次冻融循环试验,并对冻融循环后的试样进行宏观力学性能试验及断裂面扫描电镜测试。结果表明:在冻融循环作用下,强风化板岩的冻融损伤多集中于节理裂隙等软弱结构处,损伤模式主要为顺层理裂隙萌生、顺层理剥落及顺层理断裂,板岩自然饱和质量呈现先缓慢增加后迅速递减的趋势;不同层理倾角板岩强度特征差异较大且受风化作用与冻融循环作用影响显著,伴随着冻融循环次数的增加,板岩抗压强度、弹性模量均呈现非线性衰减趋势,冻融受荷损伤变量逐渐增大,3种层理倾角板岩抵抗冻融损伤作用的关系为0°>90°>45°;扫描电镜图像观察到板岩层理断裂表现出显著的脆性特征,但多次的冻融循环作用使板岩受荷破坏破裂面表现出一定的塑性特征。研究发现倾角为0°层理构造的板岩受冻融环境的影响相对较小,具有更加稳定的力学性质,研究揭示了强风化定向层理板岩各向异性冻融损伤劣化规律,可为定向产状结构围岩背景下的寒区隧道工程冻害风险评估提供参考。Abstract: This paper aims to explore the degradation law and anisotropic characteristics of freeze-thaw damage of strongly weathered carbonaceous slate surrounding rock in Xinjiang's high-cold tunnel. The authors obtained three types of slate rock samples with bedding angles of 0°,45°,and 90°,and conducted 0,10,20,30,and 40 freeze-thaw cycles under open saturated conditions. After the freeze-thaw cycles,the author conducted macroscopic mechanical performance tests and fracture surface scanning electron microscopy tests. The results show that under the action of freezing and thawing cycles,the freeze-thaw damage of strongly weathered slate is mostly concentrated at the weathered joint fissures,and the main damage modes are the initiation of bedding cracks,detachment of bedding,and fracture of bedding,the natural saturated mass of slate shows a trend of slow increase followed by rapid decrease. The strength characteristics of slate with different bedding angles vary greatly and are significantly affected by weathering and freeze-thaw cycles. With the increase of freeze-thaw cycles,the compressive strength and elastic modulus of slate rock samples exhibit a nonlinear attenuation trend,and the damage variable under freeze-thaw loading gradually increases,the relationship between the resistance to freeze-thaw damage of slate with three different bedding angles is 0°>90°>45°. Scanning electron microscopy images show that the bedding fracture of the slate exhibits significant brittle characteristics,but multiple freeze-thaw cycles cause the fracture surface of the slate to exhibit certain plastic characteristics under load. Research has found that slate with a dip angle of 0°bedding structure is less affected by the freeze-thaw environment and has more stable mechanical properties. The study has revealed the deterioration laws of anisotropic freeze-thaw damage in strongly weathered directional layered slate,which can provide reference for the risk assessment of freezing damage in cold region tunnel engineering under the background of directional occurrence structure surrounding rock.
-
表 1 板岩基本物理参数
Table 1. Basic physical parameters of slate
岩性 干密度ρd
/g·cm-3饱和密度ρs
/g·cm-3饱和含水量ω
/%孔隙度n
/%板岩 2.62 2.67 2.07 5.40 表 2 板岩单轴抗压试验破坏机制
Table 2. Failure mechanism of slate uniaxial compression test
破坏机制 拉伸破坏 单斜面剪切破坏 X状共轭斜面剪切破坏 模型示意图 单轴试验照片 表 3 冻融损伤变量Dn
Table 3. Freeze thaw damage variable Dn
循环次数n/次 θ=0° θ=45° θ=90° 0 0 0 0 10 0.0659 0.1647 0.0910 20 0.1482 0.3143 0.1833 30 0.2331 0.5777 0.3239 40 0.3195 0.7084 0.4797 -
Bao H,Pei R S,Lan H X,et al. 2021. Damage evolution of Biotite quartz schist caused by mineral directional arrangement under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,40 (10): 2015-2026. Chen G Q, Wan Y, Pei B C, et al. 2020. The creep characteristics and damage model of sandstone under freeze-thaw cycles[J]. Journal of Engineering Geology, 28 (1): 19-28. Chen Y L, Zhang K, Sun H. 2019. Meso-research on the development of rock surface crack under freeze-thaw cycles[J]. China Civil Engineering Journal, 52 (S1): 1-7. Han W G, Cui Z D, Tu X B, et al. 2021. Response characteristics of different bedding plane angles to deformation of surrounding rock in layered rock tunnel[J]. Journal of Engineering Geology, 29 (5): 1267-1275. Huang S B, Liu Y Z, Guo Y L, et al. 2019. Strength and failure characteristics of rock-like material containing single crack under freeze-thaw and uniaxial compression[J]. Cold Regions Science & Technology, 162 : 1-10. Huang S B, Lu Z X, Ye Z Y, et al. 2020. An elastoplastic model of frost deformation for the porous rock under freeze-thaw[J]. Engineering Geology, 278: 105820. doi: 10.1016/j.enggeo.2020.105820 Khanlari G, Abdilor Y 2015. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran[J]. Bulletin of Engineering Geology & the Environment, 74 (4): 1287-1300. Li J L, Zhou K P, Zhang Y M, et al. 2014. Experiment study on physical characteristics in weathered granite under freezing-thawing cycles[J]. Journal of Central South University(Science and Technology), 45 (3): 798-802. Li J L, Zhou K P, Liu W J, et al. 2016. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 26 (11): 2997-3003. doi: 10.1016/S1003-6326(16)64430-8 Liu H, Wang Y, Wang H J, et al. 2022. Experimental study on frost heaving pressure evolution of rock ice cracks under freezing-thawing cycles[J]. Journal of Engineering Geology, 30 (4): 1122-1131. Liu Q S, Huang S B, Kang Y S, et al. 2015. Fatigue damage model and evaluation index for rock mass under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (6): 1116-1127. Liu S L, Chen S X, Yu F, et al. 2012. Anisotropic properties study of chlorite schist[J]. Rock and Soil Mechanics, 33 (12): 3616-23. Liu X X, Li S N, Xu Z P, et al. 2019. Research on creep model of carbonaceous shale under freeze-thaw cycle[J]. China Journal of Highway and Transport, 32 (11): 137-45. Liu Y P, Deng H, Huang R Q. 2015. Mechanical test of slab-rent structure rock and mesoscopic morphology analysis of rupture surface[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S2): 3852-3861. Liu Y Z, Guo Y L, Huang S B, et al. 2018. Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles[J]. Rock and Soil Mechanics, 39 (S2): 62-71. Liu Y P, Deng H, Huang R Q. 2015. Mechanical test of slab-rent structure rock and mesoscopic morphology analysis of rupture surface[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S2): 3852-3861. Lu Y N, Li X P, Chan A. 2019. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 159 : 20-28. doi: 10.1016/j.coldregions.2018.11.017 Luo X D, Huang C L, Rong Z X, et al. 2011. Study of physico-mechanical characteristics of rocks in slope of Mengku iron mine under freezing-thawing cyclic effect[J]. Rock and Soil Mechanics, 32 (S1): 155-159. Mardoukhi A, Mardoukhi Y, Hokka M, et al. 2021. Effects of test temperature and low temperature thermal cycling on the dynamic tensile strength of granitic rocks[J]. Rock Mechanics and Rock Engineering, 54 (1): 443-454. doi: 10.1007/s00603-020-02253-6 Mutlutürk M, Altindag R, Türk G. 2004. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling[J]. International Journal of Rock Mechanics and Mining Sciences, 41 (2): 237-244. doi: 10.1016/S1365-1609(03)00095-9 Shen Y J, Wei X, Zhang L, et al. 2022. Hydrothermal migration of moraine soil and the mechanism of ice accumulation and frost swelling in alpine-cold mountain region[J]. Journal of Engineering Geology, 30 (5): 1450-1465. Shen Y J, Yang G S, Rong T L, et al. 2016. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 38 (10): 1775-1782. Song Y J, Zhang L T, Ren J X, et al. 2021. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering, 43 (5): 841-849. Song Y Q, Ma H F, Liu J C, et al. 2022. Experimental investigation on the damage characteristics of freeze-thaw limestone by the uniaxial compression and acoustic emission monitoring tests[J]. Chinese Journal of Rock Mechanics and Engineering, 41 (S1): 2603-2614. Song Y J, Tan H, Yang H M, et al. 2021. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography[J]. Engineering Geology, 294: 106370. doi: 10.1016/j.enggeo.2021.106370 Takarli M, Prince W, Siddique R. 2008. Damage in granite under heating/cooling cycles and water freeze-thaw condition[J]. International Journal of Rock Mechanics & Mining Sciences, 45 (7): 1164-1175. Tao M, Wang J, Li Z W, et al. 2019. Meso-and micro-experimental research on the fracture of granite spallation under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (11): 2172-2181. Wang F, Cao P, Wang Y X, et al. 2020. Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones[J]. Engineering Geology, 266: 105466. doi: 10.1016/j.enggeo.2019.105466 Wang P, Xu J Y, Fang X Y, et al. 2017. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles[J]. Engineering Geology, 221 : 104-113. doi: 10.1016/j.enggeo.2017.02.025 Xia C C, Huang W F, Han C L. 2020. A study of the service performance of tunnel lining in the cold zone when subjected to the freeze-thaw cycle[J]. Journal of Harbin Engineering University, 41 (3): 347-356. Yang G S, Xi J M, Li H J, et al. 2010. Experimental study of rock mechanical properties under triaxial compressive and frozen conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (3): 459-464. Yang G S, Shen Y J, Jia H L, et al. 2018. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (3): 545-63. Yang H R, Liu P, Sun B, et al. 2021. Study on damage mechanisms of the microstructure of sandy conglomerate at Maijishan grottoes under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (3): 545-555. Zhang H M, Yang G S. 2013. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society, 38 (10): 1756-1762. Zhang H M, Xia H J, Yang G S, et al. 2018. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks[J]. Journal of China Coal Society, 43 (2): 441-448. Zhang J Z, Miao L C, Yang Z F. 2008. Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (8): 1688-1694. Zhang Y W, Lai J X, Qiu J L, et al. 2018. Test and analysis on frost heaven effects of cold region tunnel[J]. Journal of Traffic and Transportation Engineering, 18 (3): 64-73. 包含, 裴润生, 兰恒星, 等. 2021. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律——以黑云母石英片岩为例[J]. 岩石力学与工程学报, 40 (10): 2015-2026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110006.htm 陈国庆, 万亿, 裴本灿, 等. 2020. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 28 (1): 19-28. doi: 10.13544/j.cnki.jeg.2019-363 陈宇龙, 张科, 孙欢. 2019. 冻融循环作用下岩石表面裂纹扩展过程细观研究[J]. 土木工程学报, 52 (S1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1001.htm 韩伟歌, 崔振东, 涂新斌, 等. 2021. 不同层理面角度在层状岩体隧道围岩变形中的响应特征研究[J]. 工程地质学报, 29 (5): 1267-1275. doi: 10.13544/j.cnki.jeg.2021-0307 李杰林, 周科平, 张亚民, 等. 2014. 冻融循环条件下风化花岗岩物理特性的实验研究[J]. 中南大学学报(自然科学版), 45 (3): 798-802. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403021.htm 刘昊, 王宇, 王华建, 等. 2022. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 30 (4): 1122-1131. doi: 10.13544/j.cnki.jeg.2020-204 刘泉声, 黄诗冰, 康永水, 等. 2015. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 34 (6): 1116-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506005.htm 刘胜利, 陈善雄, 余飞, 等. 2012. 绿泥石片岩各向异性特性研究[J]. 岩土力学, 33 (12): 3616-3623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212016.htm 刘新喜, 李盛南, 徐泽沛, 等. 2019. 冻融循环作用下炭质页岩蠕变模型研究[J]. 中国公路学报, 32 (11): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911014.htm 刘艳章, 郭赟林, 黄诗冰, 等. 2018. 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学, 39 (S2): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2010.htm 刘云鹏, 邓辉, 黄润秋. 2015. 板裂结构岩石力学试验及破裂断口细观形貌特征分析[J]. 岩石力学与工程学报, 34 (S2): 3852-3861. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2028.htm 罗学东, 黄成林, 肜增湘, 等. 2011. 冻融循环作用下蒙库铁矿边坡岩体物理力学特性研究[J]. 岩土力学, 32 (S1): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1028.htm 申艳军, 魏欣, 张蕾, 等. 2022. 高寒山地区冰碛土水热迁移规律及聚冰冻胀孕灾机制研究进展[J]. 工程地质学报, 30 (5): 1450-1465. doi: 10.13544/j.cnki.jeg.2022-0449 申艳军, 杨更社, 荣腾龙, 等. 2016. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 38 (10): 1775-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm 宋勇军, 张磊涛, 任建喜, 等. 2021. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报, 43 (5): 841-849. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105010.htm 宋彦琦, 马宏发, 刘济琛, 等. 2022. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报, 41(S1): 2603-2614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1002.htm 陶明, 汪军, 李占文, 等. 2019. 冲击荷载下花岗岩层裂断口细-微观试验研究[J]. 岩石力学与工程学报, 38 (11): 2172-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911003.htm 夏才初, 黄文丰, 韩常领. 2020. 冻融循环条件下寒区隧道衬砌的服役性能[J]. 哈尔滨工程大学学报, 41 (3): 347-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202003007.htm 杨更社, 申艳军, 贾海梁, 等. 2018. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 37 (3): 545-563. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803003.htm 杨更社, 奚家米, 李慧军, 等. 2010. 三向受力条件下冻结岩石力学特性试验研究[J]. 岩石力学与工程学报, 29 (3): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003005.htm 杨鸿锐, 刘平, 孙博, 等. 2021. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 40 (3): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103008.htm 张慧梅, 夏浩峻, 杨更社, 等. 2018. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报, 43 (2): 441-448. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802018.htm 张慧梅, 杨更社2013. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报, 38 (10): 1756-1762. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310008.htm 张继周, 缪林昌, 杨振峰. 2008. 冻融条件下岩石损伤劣化机制和力学特性研究[J]. 岩石力学与工程学报, 27 (8): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808022.htm 张玉伟, 赖金星, 邱军领, 等. 2018. 寒区隧道冻胀效应测试与分析[J]. 交通运输工程学报, 18 (3): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201803009.htm -