新疆高寒炭质板岩隧道围岩冻融劣化特性研究

包卫星 卢汉青 郭强 尹严

包卫星, 卢汉青, 郭强, 等. 2023. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究[J]. 工程地质学报, 31(4): 1213-1224. doi: 10.13544/j.cnki.jeg.2023-0102
引用本文: 包卫星, 卢汉青, 郭强, 等. 2023. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究[J]. 工程地质学报, 31(4): 1213-1224. doi: 10.13544/j.cnki.jeg.2023-0102
Bao Weixing, Lu Hanqing, Guo Qiang, et al. 2023. Freeze-thaw degradation characteristics of carbonaceous slate rock surrounding high cold tunnel in Xinjiang[J]. Journal of Engineering Geology, 31(4): 1213-1224. doi: 10.13544/j.cnki.jeg.2023-0102
Citation: Bao Weixing, Lu Hanqing, Guo Qiang, et al. 2023. Freeze-thaw degradation characteristics of carbonaceous slate rock surrounding high cold tunnel in Xinjiang[J]. Journal of Engineering Geology, 31(4): 1213-1224. doi: 10.13544/j.cnki.jeg.2023-0102

新疆高寒炭质板岩隧道围岩冻融劣化特性研究

doi: 10.13544/j.cnki.jeg.2023-0102
基金项目: 

新疆重大科技专项 2020A03003-7

陕西省自然科学基础研究计划面上项目 2021JM-180

中央高校基本科研业务费自主项目(领军人才计划) 300102211302

详细信息
    通讯作者:

    包卫星(1979-),男,博士,教授,博士生导师,主要从事特殊地区岩土体工程性质、灾变机理、处治方面的科研与教学工作. E-mail: baowx@chd.edu.cn

  • 中图分类号: P642.3

FREEZE-THAW DEGRADATION CHARACTERISTICS OF CARBONACEOUS SLATE ROCK SURROUNDING HIGH COLD TUNNEL IN XINJIANG

Funds: 

the Science and Technology Major Project of Xinjiang Uygur Autonomous Region 2020A03003-7

Fundamental Research on Natural Science Program of Shaanxi Province 2021JM-180

Fundamental Research Funds for the Central Universities, CHD (Project for Leading Talents) 300102211302

  • 摘要: 围岩冻融损伤劣化加剧了寒区隧道衬砌结构破坏,为探究新疆高寒隧道强风化炭质板岩围岩冻融损伤劣化规律及各向异性特征,制取层理倾角θ=0°、45°、90° 3种板岩试样,在开放饱水的条件下进行了0次、10次、20次、30次、40次冻融循环试验,并对冻融循环后的试样进行宏观力学性能试验及断裂面扫描电镜测试。结果表明:在冻融循环作用下,强风化板岩的冻融损伤多集中于节理裂隙等软弱结构处,损伤模式主要为顺层理裂隙萌生、顺层理剥落及顺层理断裂,板岩自然饱和质量呈现先缓慢增加后迅速递减的趋势;不同层理倾角板岩强度特征差异较大且受风化作用与冻融循环作用影响显著,伴随着冻融循环次数的增加,板岩抗压强度、弹性模量均呈现非线性衰减趋势,冻融受荷损伤变量逐渐增大,3种层理倾角板岩抵抗冻融损伤作用的关系为0°>90°>45°;扫描电镜图像观察到板岩层理断裂表现出显著的脆性特征,但多次的冻融循环作用使板岩受荷破坏破裂面表现出一定的塑性特征。研究发现倾角为0°层理构造的板岩受冻融环境的影响相对较小,具有更加稳定的力学性质,研究揭示了强风化定向层理板岩各向异性冻融损伤劣化规律,可为定向产状结构围岩背景下的寒区隧道工程冻害风险评估提供参考。
  • 图  1  取样位置与围岩形貌

    a. 取样位置;b. 隧道掌子面;c. 隧道围岩;d. 强风化岩块

    Figure  1.  Sampling location and rock morphology

    图  2  制样流程

    Figure  2.  Sample making process

    图  3  强风化板岩岩芯

    Figure  3.  Strongly weathered slate core

    图  4  加载方向与层理面关系

    Figure  4.  Loading direction and bedding plane relationship

    图  5  板岩冻融损伤劣化特征

    Figure  5.  Deterioration characteristics of slate freeze-thaw damage

    图  6  试样冻融循环后质量变化情况

    Figure  6.  Quality change of carbonaceous slate in freeze-thaw cycles

    图  7  风化板岩受荷的局部处断裂

    Figure  7.  Local fracture of weathered slate under load

    图  8  冻融循环下不同层理倾角试样应力-应变曲线

    a. 饱和岩样;b. 10次冻融循环;c. 20次冻融循环;d. 30次冻融循环;e. 40次冻融循环

    Figure  8.  Stress-strain curves of slate with different bedding dip angles under freeze-thaw cycles

    图  9  冻融循环对板岩抗压强度和弹性模量的影响曲线

    a. 抗压强度劣化趋势;b. 弹性模量劣化趋势

    Figure  9.  Influence curve of freeze-thaw cycle on compressive strength and elastic modulus of slate

    图  10  强风化试样内软弱结构

    Figure  10.  Weak structure in strongly weathered samples

    图  11  典型破裂面形态

    a. X状共轭剪切破坏试样破裂面;b. 拉伸破坏试样破裂面

    Figure  11.  Typical rupture surface pattern

    图  12  冻融循环与荷载耦合作用下典型破裂面电镜扫描图

    a. 0次冻融循环(剪切破裂面);b. 20次冻融循环(剪切破裂面);c. 40次冻融循环(剪切破裂面);d. 0次冻融循环(拉伸破裂面);e. 20次冻融循环(拉伸破裂面);f. 40次冻融循环(拉伸破裂面)

    Figure  12.  Typical rupture surface electron microscope scans under coupled freeze-thaw cycles and loading

    图  13  冻融循环对冻融损伤变量的影响曲线

    Figure  13.  Influence curve of freeze-thaw cycle on freeze-thaw damage variable

    图  14  冻融受荷总损伤变量与冻融次数关系

    a. θ=0°;b. θ=45°;c. θ=90°

    Figure  14.  Relation between total damage value under freeze-thaw load and freeze-thaw times

    表  1  板岩基本物理参数

    Table  1.   Basic physical parameters of slate

    岩性 干密度ρd
    /g·cm-3
    饱和密度ρs
    /g·cm-3
    饱和含水量ω
    /%
    孔隙度n
    /%
    板岩 2.62 2.67 2.07 5.40
    下载: 导出CSV

    表  2  板岩单轴抗压试验破坏机制

    Table  2.   Failure mechanism of slate uniaxial compression test

    破坏机制 拉伸破坏 单斜面剪切破坏 X状共轭斜面剪切破坏
    模型示意图
    单轴试验照片
    下载: 导出CSV

    表  3  冻融损伤变量Dn

    Table  3.   Freeze thaw damage variable Dn

    循环次数n/次 θ=0° θ=45° θ=90°
    0 0 0 0
    10 0.0659 0.1647 0.0910
    20 0.1482 0.3143 0.1833
    30 0.2331 0.5777 0.3239
    40 0.3195 0.7084 0.4797
    下载: 导出CSV
  • Bao H,Pei R S,Lan H X,et al. 2021. Damage evolution of Biotite quartz schist caused by mineral directional arrangement under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,40 (10): 2015-2026.
    Chen G Q, Wan Y, Pei B C, et al. 2020. The creep characteristics and damage model of sandstone under freeze-thaw cycles[J]. Journal of Engineering Geology, 28 (1): 19-28.
    Chen Y L, Zhang K, Sun H. 2019. Meso-research on the development of rock surface crack under freeze-thaw cycles[J]. China Civil Engineering Journal, 52 (S1): 1-7.
    Han W G, Cui Z D, Tu X B, et al. 2021. Response characteristics of different bedding plane angles to deformation of surrounding rock in layered rock tunnel[J]. Journal of Engineering Geology, 29 (5): 1267-1275.
    Huang S B, Liu Y Z, Guo Y L, et al. 2019. Strength and failure characteristics of rock-like material containing single crack under freeze-thaw and uniaxial compression[J]. Cold Regions Science & Technology, 162 : 1-10.
    Huang S B, Lu Z X, Ye Z Y, et al. 2020. An elastoplastic model of frost deformation for the porous rock under freeze-thaw[J]. Engineering Geology, 278: 105820. doi: 10.1016/j.enggeo.2020.105820
    Khanlari G, Abdilor Y 2015. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran[J]. Bulletin of Engineering Geology & the Environment, 74 (4): 1287-1300.
    Li J L, Zhou K P, Zhang Y M, et al. 2014. Experiment study on physical characteristics in weathered granite under freezing-thawing cycles[J]. Journal of Central South University(Science and Technology), 45 (3): 798-802.
    Li J L, Zhou K P, Liu W J, et al. 2016. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 26 (11): 2997-3003. doi: 10.1016/S1003-6326(16)64430-8
    Liu H, Wang Y, Wang H J, et al. 2022. Experimental study on frost heaving pressure evolution of rock ice cracks under freezing-thawing cycles[J]. Journal of Engineering Geology, 30 (4): 1122-1131.
    Liu Q S, Huang S B, Kang Y S, et al. 2015. Fatigue damage model and evaluation index for rock mass under freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (6): 1116-1127.
    Liu S L, Chen S X, Yu F, et al. 2012. Anisotropic properties study of chlorite schist[J]. Rock and Soil Mechanics, 33 (12): 3616-23.
    Liu X X, Li S N, Xu Z P, et al. 2019. Research on creep model of carbonaceous shale under freeze-thaw cycle[J]. China Journal of Highway and Transport, 32 (11): 137-45.
    Liu Y P, Deng H, Huang R Q. 2015. Mechanical test of slab-rent structure rock and mesoscopic morphology analysis of rupture surface[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S2): 3852-3861.
    Liu Y Z, Guo Y L, Huang S B, et al. 2018. Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles[J]. Rock and Soil Mechanics, 39 (S2): 62-71.
    Liu Y P, Deng H, Huang R Q. 2015. Mechanical test of slab-rent structure rock and mesoscopic morphology analysis of rupture surface[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (S2): 3852-3861.
    Lu Y N, Li X P, Chan A. 2019. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 159 : 20-28. doi: 10.1016/j.coldregions.2018.11.017
    Luo X D, Huang C L, Rong Z X, et al. 2011. Study of physico-mechanical characteristics of rocks in slope of Mengku iron mine under freezing-thawing cyclic effect[J]. Rock and Soil Mechanics, 32 (S1): 155-159.
    Mardoukhi A, Mardoukhi Y, Hokka M, et al. 2021. Effects of test temperature and low temperature thermal cycling on the dynamic tensile strength of granitic rocks[J]. Rock Mechanics and Rock Engineering, 54 (1): 443-454. doi: 10.1007/s00603-020-02253-6
    Mutlutürk M, Altindag R, Türk G. 2004. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling[J]. International Journal of Rock Mechanics and Mining Sciences, 41 (2): 237-244. doi: 10.1016/S1365-1609(03)00095-9
    Shen Y J, Wei X, Zhang L, et al. 2022. Hydrothermal migration of moraine soil and the mechanism of ice accumulation and frost swelling in alpine-cold mountain region[J]. Journal of Engineering Geology, 30 (5): 1450-1465.
    Shen Y J, Yang G S, Rong T L, et al. 2016. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 38 (10): 1775-1782.
    Song Y J, Zhang L T, Ren J X, et al. 2021. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering, 43 (5): 841-849.
    Song Y Q, Ma H F, Liu J C, et al. 2022. Experimental investigation on the damage characteristics of freeze-thaw limestone by the uniaxial compression and acoustic emission monitoring tests[J]. Chinese Journal of Rock Mechanics and Engineering, 41 (S1): 2603-2614.
    Song Y J, Tan H, Yang H M, et al. 2021. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography[J]. Engineering Geology, 294: 106370. doi: 10.1016/j.enggeo.2021.106370
    Takarli M, Prince W, Siddique R. 2008. Damage in granite under heating/cooling cycles and water freeze-thaw condition[J]. International Journal of Rock Mechanics & Mining Sciences, 45 (7): 1164-1175.
    Tao M, Wang J, Li Z W, et al. 2019. Meso-and micro-experimental research on the fracture of granite spallation under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 38 (11): 2172-2181.
    Wang F, Cao P, Wang Y X, et al. 2020. Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones[J]. Engineering Geology, 266: 105466. doi: 10.1016/j.enggeo.2019.105466
    Wang P, Xu J Y, Fang X Y, et al. 2017. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles[J]. Engineering Geology, 221 : 104-113. doi: 10.1016/j.enggeo.2017.02.025
    Xia C C, Huang W F, Han C L. 2020. A study of the service performance of tunnel lining in the cold zone when subjected to the freeze-thaw cycle[J]. Journal of Harbin Engineering University, 41 (3): 347-356.
    Yang G S, Xi J M, Li H J, et al. 2010. Experimental study of rock mechanical properties under triaxial compressive and frozen conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (3): 459-464.
    Yang G S, Shen Y J, Jia H L, et al. 2018. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 37 (3): 545-63.
    Yang H R, Liu P, Sun B, et al. 2021. Study on damage mechanisms of the microstructure of sandy conglomerate at Maijishan grottoes under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 40 (3): 545-555.
    Zhang H M, Yang G S. 2013. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society, 38 (10): 1756-1762.
    Zhang H M, Xia H J, Yang G S, et al. 2018. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks[J]. Journal of China Coal Society, 43 (2): 441-448.
    Zhang J Z, Miao L C, Yang Z F. 2008. Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (8): 1688-1694.
    Zhang Y W, Lai J X, Qiu J L, et al. 2018. Test and analysis on frost heaven effects of cold region tunnel[J]. Journal of Traffic and Transportation Engineering, 18 (3): 64-73.
    包含, 裴润生, 兰恒星, 等. 2021. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律——以黑云母石英片岩为例[J]. 岩石力学与工程学报, 40 (10): 2015-2026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110006.htm
    陈国庆, 万亿, 裴本灿, 等. 2020. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 28 (1): 19-28. doi: 10.13544/j.cnki.jeg.2019-363
    陈宇龙, 张科, 孙欢. 2019. 冻融循环作用下岩石表面裂纹扩展过程细观研究[J]. 土木工程学报, 52 (S1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1001.htm
    韩伟歌, 崔振东, 涂新斌, 等. 2021. 不同层理面角度在层状岩体隧道围岩变形中的响应特征研究[J]. 工程地质学报, 29 (5): 1267-1275. doi: 10.13544/j.cnki.jeg.2021-0307
    李杰林, 周科平, 张亚民, 等. 2014. 冻融循环条件下风化花岗岩物理特性的实验研究[J]. 中南大学学报(自然科学版), 45 (3): 798-802. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201403021.htm
    刘昊, 王宇, 王华建, 等. 2022. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 30 (4): 1122-1131. doi: 10.13544/j.cnki.jeg.2020-204
    刘泉声, 黄诗冰, 康永水, 等. 2015. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 34 (6): 1116-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201506005.htm
    刘胜利, 陈善雄, 余飞, 等. 2012. 绿泥石片岩各向异性特性研究[J]. 岩土力学, 33 (12): 3616-3623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212016.htm
    刘新喜, 李盛南, 徐泽沛, 等. 2019. 冻融循环作用下炭质页岩蠕变模型研究[J]. 中国公路学报, 32 (11): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911014.htm
    刘艳章, 郭赟林, 黄诗冰, 等. 2018. 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学, 39 (S2): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2010.htm
    刘云鹏, 邓辉, 黄润秋. 2015. 板裂结构岩石力学试验及破裂断口细观形貌特征分析[J]. 岩石力学与工程学报, 34 (S2): 3852-3861. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2028.htm
    罗学东, 黄成林, 肜增湘, 等. 2011. 冻融循环作用下蒙库铁矿边坡岩体物理力学特性研究[J]. 岩土力学, 32 (S1): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1028.htm
    申艳军, 魏欣, 张蕾, 等. 2022. 高寒山地区冰碛土水热迁移规律及聚冰冻胀孕灾机制研究进展[J]. 工程地质学报, 30 (5): 1450-1465. doi: 10.13544/j.cnki.jeg.2022-0449
    申艳军, 杨更社, 荣腾龙, 等. 2016. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 38 (10): 1775-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm
    宋勇军, 张磊涛, 任建喜, 等. 2021. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报, 43 (5): 841-849. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105010.htm
    宋彦琦, 马宏发, 刘济琛, 等. 2022. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报, 41(S1): 2603-2614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1002.htm
    陶明, 汪军, 李占文, 等. 2019. 冲击荷载下花岗岩层裂断口细-微观试验研究[J]. 岩石力学与工程学报, 38 (11): 2172-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911003.htm
    夏才初, 黄文丰, 韩常领. 2020. 冻融循环条件下寒区隧道衬砌的服役性能[J]. 哈尔滨工程大学学报, 41 (3): 347-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202003007.htm
    杨更社, 申艳军, 贾海梁, 等. 2018. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 37 (3): 545-563. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201803003.htm
    杨更社, 奚家米, 李慧军, 等. 2010. 三向受力条件下冻结岩石力学特性试验研究[J]. 岩石力学与工程学报, 29 (3): 459-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003005.htm
    杨鸿锐, 刘平, 孙博, 等. 2021. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 40 (3): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103008.htm
    张慧梅, 夏浩峻, 杨更社, 等. 2018. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报, 43 (2): 441-448. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802018.htm
    张慧梅, 杨更社2013. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报, 38 (10): 1756-1762. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310008.htm
    张继周, 缪林昌, 杨振峰. 2008. 冻融条件下岩石损伤劣化机制和力学特性研究[J]. 岩石力学与工程学报, 27 (8): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808022.htm
    张玉伟, 赖金星, 邱军领, 等. 2018. 寒区隧道冻胀效应测试与分析[J]. 交通运输工程学报, 18 (3): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201803009.htm
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  17
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-07-13
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回