基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价

胡杨 张紫昭 林世河

胡杨, 张紫昭, 林世河. 2023. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价[J]. 工程地质学报, 31(4): 1350-1363. doi: 10.13544/j.cnki.jeg.2023-0128
引用本文: 胡杨, 张紫昭, 林世河. 2023. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价[J]. 工程地质学报, 31(4): 1350-1363. doi: 10.13544/j.cnki.jeg.2023-0128
Hu Yang, Zhang Zizhao, Lin Shihe. 2023. Evaluation of landslide susceptibility in Ili valley, Xinjiang based on the coupling of WOE model and logistic regression[J]. Journal of Engineering Geology, 31(4): 1350-1363. doi: 10.13544/j.cnki.jeg.2023-0128
Citation: Hu Yang, Zhang Zizhao, Lin Shihe. 2023. Evaluation of landslide susceptibility in Ili valley, Xinjiang based on the coupling of WOE model and logistic regression[J]. Journal of Engineering Geology, 31(4): 1350-1363. doi: 10.13544/j.cnki.jeg.2023-0128

基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价

doi: 10.13544/j.cnki.jeg.2023-0128
基金项目: 

国家自然科学基金项目 41967036

新疆维吾尔自治区重点研发任务专项资助项目 2021B03004-1

详细信息
    作者简介:

    胡杨(1999-),男,硕士生,主要从事地理信息科学与地质灾害方面的研究工作. E-mail:18709919889@163.com

    通讯作者:

    张紫昭(1981-),男,博士,教授,博士生导师,主要从事地质灾害和地质环境方面的科研与教学工作. E-mail:253569481@qq.com

  • 中图分类号: P642.22

EVALUATION OF LANDSLIDE SUSCEPTIBILITY IN ILI VALLEY, XINJIANG BASED ON THE COUPLING OF WOE MODEL AND LOGISTIC REGRESSION

Funds: 

the National Natural Science Foundation of China 41967036

the Key Research and Development Project of Xinjiang Uygur Autonomous Region 2021B03004-1

  • 摘要: 伊犁地处中亚内陆腹地,分布着许多高山峻岭,自然地理条件和地质环境复杂,地质灾害(尤其是滑坡)频发,严重影响着该地区正常的生产生活,有必要开展滑坡地质灾害易发性评价。本文在前期工作成果的基础上,结合该地区影响滑坡发生条件,选取高程、坡度、温度、降雨、地形湿度指数、工程地质岩组、距道路距离、距水系距离以及距断层距离等9个因子作为评价因子,采用证据权和逻辑回归(Logistic)耦合模型,通过GIS与统计学相结合的技术方法开展伊犁地区滑坡的易发性评价。研究结果表明:选取的9个因子均对滑坡的发生具有较强的相关性,在证据权模型的基础上与逻辑回归模型耦合具有较好的评价效果。经过评价得出,地质灾害极高易发区与高易发区面积占全区总面积25.74%,主要分布于中低山丘陵地区。依据逻辑回归计算结果,该地区滑坡的发生与河流、人类工程活动以及坡度关系最为密切。经ROC曲线检验,该耦合模型评价精度高达89.7%(AUC=0.897),通过现场检验,本文模型得出的易发性评价结果更为精确合理且符合实际情况,可以为该地区的地质灾害预防和治理工作提供重要参考。
  • 图  1  研究区概况

    Figure  1.  Overview of the study area

    图  2  伊犁地区滑坡分布图

    Figure  2.  Landslide distribution map in Ili region

    图  3  高程分级信息

    Figure  3.  Classification of elevation

    图  4  坡度分级信息

    Figure  4.  Classification of slope

    图  5  工程地质岩组分级信息

    Figure  5.  Classification of engineering geological rock group

    图  6  距断层距离分级信息

    Figure  6.  Classification of distance from faults

    图  7  距水系距离分级信息

    Figure  7.  Classification of distance from water system

    图  8  距道路距离分级信息

    Figure  8.  Classification of distance from road

    图  9  温度分级信息

    Figure  9.  Classification of temperature

    图  10  降雨分级信息

    Figure  10.  Classification of rainfall

    图  11  证据权模型评价结果

    Figure  11.  The evaluation result of the WOE model

    图  12  耦合模型评价结果

    Figure  12.  The evaluation result of the coupling model

    图  13  易发性评价部分区域(左:证据权与逻辑回归耦合模型;右:证据权模型)

    Figure  13.  Part of the susceptibility evaluation area(Left: The evaluation result of the coupling model; Right: Evidence WOE model)

    图  14  ROC曲线图

    Figure  14.  ROC curve

    表  1  相关系数矩阵

    Table  1.   Correlation coefficient matrix

    高程 坡度 地形湿度指数 地层岩性 距道路距离 距水系距离 距断层距离 气温 降雨
    高程 1
    坡度 0.64 1
    地形湿度指数 0.41 0.61 1
    工程地质岩组 0.68 0.07 0.15 1
    距道路距离 0.54 0.48 0.46 0.13 1
    距水系距离 0.37 0.54 0.68 0.26 0.17 1
    距断层距离 0.42 0.42 0.39 0.38 0.26 0.06 1
    气温 0.75 0.46 0.31 0.36 0.24 0.09 0.15 1
    降雨 0.61 0.46 0.47 0.32 0.38 0.55 0.42 0.42 1
    下载: 导出CSV

    表  2  共线性统计

    Table  2.   Collinearity statistics

    未标准化系数 共线性统计
    容忍度 VIF
    (常量)
    距断层距离 0.970 1.031
    距水系距离 0.967 1.034
    地形湿度指数 0.895 1.118
    工程地质岩组 0.862 1.16
    气温 0.274 3.644
    高程 0.216 4.628
    距道路距离 0.966 1.035
    坡度 0.814 1.229
    降雨 0.392 2.549
    下载: 导出CSV

    表  3  相关性划分标准

    Table  3.   Correlation classification criteria

    Hosmer and Lemeshow Test
    步骤 卡方 显著性
    37.132 0.053
    下载: 导出CSV

    表  4  相关性划分标准

    Table  4.   Correlation classification criteria

    高相关性 中相关性 低相关性 不相关
    r≥0.8 0.5≤r<0.8 0.3≤r<0.5 r<0.3
    下载: 导出CSV

    表  5  逻辑回归计算结果

    Table  5.   Results of logistic regression analysis

    B 标准误差 瓦尔德 自由度 显著性
    距断层距离 0.213 0.141 2.296 1 0.130
    距水系距离 0.657 0.073 81.636 1 0
    TWI 0.498 0.101 24.097 1 0
    工程地质岩组 -0.386 0.047 66.821 1 0
    气温 0.210 0.034 37.481 1 0
    高程 0.366 0.028 165.381 1 0
    距道路距离 0.781 0.111 49.280 1 0
    坡度 0.619 0.036 296.379 1 0
    降雨 0.338 0.030 124.546 1 0
    常量 -0.020 0.085 0.058 1 0.209
    下载: 导出CSV

    表  6  各等级易发区灾害点分布表

    Table  6.   Distribution of disaster points in vulnerable areas of different levels

    易发性分级 面积/km2 滑坡数量/个 滑坡密度/个·km-2
    极高 5363 663 0.12
    9178 786 0.09
    12091 817 0.07
    29 868 468 0.02
    下载: 导出CSV
  • An H T,Liu P. 2010. Genesis and influencing factors of loess landslides in Ili region in Xinjiang[J]. Journal of Geological Hazards and Environment Preservation,21 (3): 22-25.
    Bai G S, Yang X M, Zhu J Y, et al. 2022. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 33 (5): 128-138.
    Bi J A, Xu P H, Song S Y, et al. 2022. Assessment of the susceptibility to geological hazards in the Manas River Basin based on the coupled information value-logistic regression model[J]. Journal of Engineering Geology, 30 (5): 1549-1560.
    Cao X H, Meng H, Shang Y J, et al. 2020. The development and distribution of loess landslides in Yili Valley and its causes[J]. Xinjiang Geology, 38 (3): 405-411.
    Chen C. 2020. Study on the mechanism of the impact of heavy rain and high temperature weather on geological disasters[J]. Journal of Catastrophology, 35 (1): 32-37.
    Cheng Q M. 2015. Boost W of E: A new sequential weights of evidence model reducing the effect of conditional dependency[J]. Mathematical Geosciences, 47 : 591-621. doi: 10.1007/s11004-014-9578-2
    Fall M, Azzam R, Noubactep C. 2006. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping[J]. Engineering Geology, 82 : 241-263. doi: 10.1016/j.enggeo.2005.11.007
    Fan Q, Ju N P, Xiang X Q, et al. 2015. Landslides susceptibility assessment using weihgts of evidence in the Tongzi watershed, China[J]. Journal of Catastrophology, 30 (1): 124-129.
    Fu G. 2020. Study on landslide susceptibility evaluation of a typical loess area in Yili prefecture[D]. Huainan: Anhui University of Science and Technology.
    Gayen A, Saha S. 2017. Application of weights-of-evidence(WoE) and evidential belief function(EBF)models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand, India[J]. Modeling Earth Systems and Environment, 3 : 1123-1139. doi: 10.1007/s40808-017-0362-4
    Goumrasa A, Guendouz M, Guettouche M S, et al. 2021. Flood hazard susceptibility assessment in Chiffa wadi watershed and along the first section of Algeria North-South highway using GIS and AHP method[J]. Applied Geomatics, 13 : 565-585. doi: 10.1007/s12518-021-00381-4
    Guo J P. 2019. Study on the influence of river erosion on landslide stability[J]. Gansu Water Resources and Hydropower Technology, 55 (11): 38-41, 45.
    He S, Hu M, Yang Z H, et al. 2022. Evaluation of landslide susceptibility based on the fuzzy frequency ratio and entropy index: A case study of Chongyi County[J]. Nonferrous Metals Science and Engineering, 13 (4): 80-90.
    Hemasinghe H, Rangali R S S, Deshapriya N L, et al. 2018. Landslide susceptibility mapping using logistic regression model(a case study in Badulla District, Sri Lanka)[J]. Procedia Engineering, 212 : 1046-1053. doi: 10.1016/j.proeng.2018.01.135
    Hou N, Ren K. 2008. Studys on the influence of rainfall to coast[J]. Shanxi Architecture, 31 (34): 135-136.
    Lombardo L, Mai P M. 2018. Presenting logistic regression-based landslide susceptibility results[J]. Engineering Geology, 244 : 14-24. doi: 10.1016/j.enggeo.2018.07.019
    Hu Y, Li D Y, Meng S S, et al. 2020. Landslide susceptibility evaluation in Badong County based on weights of evidence method[J]. Bulletin of Geological Science and Technology, 39 (3): 187-194.
    Huangfu W C. 2021. Application of logical regression model in assessment of landslide hazard susceptibility: A case study of Ganzhou[D]. Nanchang: East China University of Technology.
    Lee S. 2005. Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis[J]. Geosciences Journal, 9 : 63-71. doi: 10.1007/BF02910555
    Li G H, Tie Y B, Bai Y J, et al. 2022. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge sec ̄tion)[J]. The Chinese Journal of Geological Hazard and Control, 33 (3): 123-133.
    Li L T. 2022. Study on risk assessment of geological hazards in loess area based on GIS: A case study of Zhongyang County, Shanxi Province[D]. Hebei: Hebei GEO University.
    Li S D, Qiao H, Ma S W, et al. 2021. Temperature-rainfall dual parameter-based early warning model for geological disasters in Xiniiang[J]. Water Resources and Hydropower Engineering, 52 (11): 207-218.
    Li Z T, Wang T, Zhou Y, et al. 2019. Landslide susceptibility assessment based on information value model, logistic regression model and their integrated model: a case in Shatang River Basin, Qinghai Province[J]. Geoscience, 33 (1): 235-245.
    Lin X. 2023. Discussion on the influence of plant geological processes on the prevention and control of geological disaster[J]. Fujian Construction Science & Technology, 81-83, 88.
    Liu M X, Chen X, Yang S N. 2014. Zonation of landslide risk with logistic regression model and certainty factor[J]. Journal of Engineering Geology, 22 (6): 1250-1256.
    Liu M. 2011. Research on sensitivity of influence factors on soil landslide stability-Taking Oingchuan Earthquake-Stricken areas as an example[D]. Chengdu: Chengdu University of Technology.
    Lombard L, Mai P M. 2018. Presenting logistic regression-based landslide susceptibility results[J]. Engineering Geology, 244: 14-24. doi: 10.1016/j.enggeo.2018.07.019
    Luo D H. 2010. Experiment for loess landside of freezing-thawing[D]. Xi'an: Xi'an University of Science and Technology.
    Marjanović M, Kovačević M, Bajat B, et al. 2011. Landslide susceptibility assessment using SVM machine learning algorithm[J]. Engineering Geology, 123 : 225-234. doi: 10.1016/j.enggeo.2011.09.006
    Neuhäuser B, Damm B, Terhorst B. 2012. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model[J]. Landslides, 9 : 511-528. doi: 10.1007/s10346-011-0305-5
    Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling[J]. Environmental Modelling & Software, 25 : 747-759.
    Qi S W, Li Y C, Song S H, et al. 2022. Regionalization of engineering geological stability and distribution of engineering disturbance disasters in Tibetan Plateau[J]. Journal of Engineering Geology, 30 (3): 599-608.
    Shan B. 2014. Reservoir bank geological disaster susceptibility assessment and study on zoning of disaster risk in Benzilan Water-Source reservoir area based on 3S technology[D]. Changchun: Jilin University.
    Shang Y J, Jin W J, Yi X T, et al. 2022. Geophysical exploration on unique geostructure of super large Zeketai Landslide in Xinyuan County and back analysis on influence of old landslide[J]. Journal of Engineering Geology, 30 (3): 760-771.
    Shou K J, Lin J F. 2020. Evaluation of the extreme rainfall predictions and their impact on landslide susceptibility in a sub-catchment scale[J]. Engineering Geology, 265: 105434. doi: 10.1016/j.enggeo.2019.105434
    Tang C M, Zhang X. 2020. Analysis and evaluation of the impact of rainfall on landslides and collapse geological disasters[J]. Theoretical Research in Urban Construction, (16): 78.
    Tian S X, Zhang L F, Meng S Y, et al. 2022. Application of AHP-Informational quantity model in assessment of susceptibility of slope geological disasters[J]. Journal of Hebei GEO University, 45 : 62-68.
    Wang C Y. 2008. Study on the relationship between aspect and slope stability[D]. Kunming: Kunming University of Science and Technology.
    Wang C Z, Zhang W, Li C D, et al. 2022. Susceptibility evaluation of landslide hazards of Shaxi river basin based on GlS and AHP[J]. Geological Survey of China, 9 (5): 51-60.
    Wang J J, Yin K L, Du J, et al. 2013. Research on hydrology-mechanics coupling model of landslide hazards prediction base on GIS by using Quasi-Dynamic wetness index[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (S2): 3868-3877.
    Wang K, Guo C B, Ma S M, et al. 2016. Landslide susceptibility evaluation based on weight-of-evidence modeling in the Xianshuihe fault zone, east Tibetan Plateau[J]. Geoscience, 30 (3): 705-715.
    Wang L J, Guo M, Sawada K, et al. 2016. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network[J]. Geosciences Journal, 20 : 117-136. doi: 10.1007/s12303-015-0026-1
    Wang S B, Zhuang J Q, Fan H Y, et al. 2022a. Evaluation of landslide susceptibility based on frequency ratio and ensemble learning-taking the Batang-Dege section in the upstream of Jinsha river as an example[J]. Journal of Engineering Geology, 30 (3): 817-828.
    Wang S B, Zhuang J Q, Zheng J, et al. 2022b. Landslide susceptibility evaluation based on deep learning along Kangding-litang section of CZ railway[J]. Journal of Engineering Geology, 30 (3): 908-919.
    Wang W D, Liu P, Gong L. 2019. Landslide susceptibility mapping of Sichuan Province based on support vector machine[J]. Journal of Railway Science and Engineering, 16 (5): 1194-1200.
    Wang X D, Zhang C B, Wang C, et al. 2022. Geological disaster susceptibility in Helong City based on logistic regression and random forest[J]. Journal of Jilin University(Earth Science Edition), 52 (6): 1957-1970.
    Wang X M, Mai Z J. 2016. Sliding mechanism and deformation characteristics of typical large loess landslides in Yili Xinjiang[J]. Journal of Water Resources and Architectural Engineering, 14 (4): 195-200.
    Wang X, Shi Y, Chen H. 2022. Evaluation of geological hazard susceptibility based on certainty factors coupling logistic regression[J]. Bulletin of Surveying and Mapping, (11): 112-117.
    Wang Z W, Li D Y, Wang X G. 2012. Review of researches on regional landslide susceptibility mapping model[J]. Journal of Yangtze River Scientific Research Institute, 29 (5): 78-85, 94.
    Wang Z Y. 2008. Study on the relationship between aspect and slope stability[D]. Kunming: Kunming University of Science and Technology.
    Wu S, Li H J, Zhang K, et al. 2015. Sensitivity analysis of elevation to landslide growth in Pingchang County[J]. Journal of China Three Gorges University(Natural Sciences), 37 (4): 62-66.
    Xie J M. 2004. Study on the influence of rainfall on landslide process[D]. Wuhan: China University of Geosciences.
    Xu C, Dai F C, Yao X, et al. 2010. GIS platform and certainty factor analysis method based Wenchuan Earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 18 (1): 15-26.
    Xu M, Cui Y L, Yuan W H, et al. 2021. Evaluation of Yili loess landslide susceptibility based on GlS and information quantity method[J]. Journal of Henan University of Urban Construction, 30 (4): 25-31.
    Yang H Y, Xu X N, Yang H F. 2020. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control, 31 (3): 20-29.
    Yang S Y, Weng M Z, Tian H, et al. 2021. Landslide risk evaluation in the urban area in Hefeng County, Hubei Province[J]. Safety and Environmental Engineering, 28 (1): 144-155.
    Youssef A M, Pradhan B, Pourghasemi H R, et al. 2015. Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS[J]. Geosciences Journal, 19 : 449-469. doi: 10.1007/s12303-014-0065-z
    Zhang X Q, Li M G, Chen J J, et al. 2022. Mechanism of influence of rainfall infiltration on deformation of foundation pit in unsaturated residual soil[J]. Journal of Engineering Geology, 30 (4): 1266-1274.
    Zhang Y D, Shi Y, Wang J Y, et al. 2023. Research on InSAR identification and development characteristics of landslide hidden hazards in Yili area, Xinjiang[J]. Remote Sensing Technology and Application, 38 (2): 496-507.
    Zhao F M. 2020. Early ldentification of geological hazards and landslides susceptibility evaluation of Karakorum Highway(Domestic Sec-tion)[D]. Lanzhou: Lanzhou University.
    Zhao Q R, Cao S H, Wen W F, et al. 2021. Landslide susceptibility evaluation based on weights of evidence method for the Zaoshi Reservoir in Shimen County, Hunan Province[J]. South China Geology, 37 (2): 216-225.
    Zhou P, Deng H, Zhang W J, et al. 2022. Landslide susceptibility evaluation based on information value modeland machine learning method: A case study of Lixian County, Sichuan Province[J]. Scientia Geographica Sinica, 42 (9): 1665-1675.
    Zhou Y L, Wu X P, Li F, et al. 2018. Experimental study on influence of freeze-thaw cycles and dry-wet alternation on mechanical properties of loess[J]. Railway Engineering, 58 (4): 98-100, 105.
    安海堂, 刘平. 2010. 新疆伊犁地区黄土滑坡成因及影响因素分析[J]. 地质灾害与环境保护, 21 (3): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201003005.htm
    白光顺, 杨雪梅, 朱杰勇, 等. 2022. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报, 33 (5): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202205015.htm
    毕结昂, 徐佩华, 宋盛渊, 等. 2022. 基于信息量-逻辑回归耦合模型的玛纳斯河流域地质灾害易发性评价[J]. 工程地质学报, 30 (5): 1549-1560. doi: 10.13544/j.cnki.jeg.2022-0327
    曹小红, 孟和, 尚彦军, 等. 2020. 伊犁谷地黄土滑坡发育分布规律及成因[J]. 新疆地质, 38 (3): 405-411. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202003023.htm
    陈才. 2020. 暴雨和高温天气对地质灾害的影响机理研究[J]. 灾害学, 35 (1): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202001008.htm
    范强, 巨能攀, 向喜琼, 等. 2015. 证据权法在滑坡易发性分区中的应用——以贵州桐梓河流域为例[J]. 灾害学, 30 (1): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201501024.htm
    傅贵. 2020. 伊犁某典型黄土区滑坡易发性评价研究[D]. 淮南: 安徽理工大学.
    郭京平. 2019. 河流侵蚀对滑坡稳定性影响研究[J]. 甘肃水利水电技术, 55 (11): 38-41, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSJ201911009.htm
    何书, 胡萌, 杨志华, 等. 2022. 基于模糊频率比与熵指数的滑坡易发性评价——以崇义县为例[J]. 有色金属科学与工程, 13 (4): 80-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202204010.htm
    侯宁, 任坤. 2008. 降雨对滑坡的影响研究[J]. 山西建筑, 31 (34): 135-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX200831081.htm
    胡燕, 李德营, 孟颂颂, 等. 2020. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报, 39 (3): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003023.htm
    皇甫文超. 2021. 逻辑回归模型在滑坡灾害易发性评价中的应用[D]. 南昌: 东华理工大学.
    李光辉, 铁永波, 白永建, 等. 2022. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报, 33 (3): 123-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202203014.htm
    李力涛. 2022. 基于GIS的黄土地区地质灾害风险评价研究[D]. 石家庄: 河北地质大学.
    李守定, 乔华, 马世伟, 等. 2021. 基于温度-降雨双参数的新疆地质灾害预警模型[J]. 水利水电技术(中英文), 52 (11): 207-218. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202111020.htm
    栗泽桐, 王涛, 周杨, 等. 2019. 基于信息量、逻辑回归及其耦合模型的滑坡易发性评估研究: 以青海沙塘川流域为例[J]. 现代地质, 33 (1): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901023.htm
    林翔. 2023. 植物地质作用对地质灾害防治影响的探讨[J]. 福建建设科技, 81-83, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-FJJK202301021.htm
    刘茂. 2011. 土质滑坡稳定性影响因素的敏感性研究-以"青川县"地震灾区为例[D]. 成都: 成都理工大学.
    刘明学, 陈祥, 杨珊妮. 2014. 基于逻辑回归模型和确定性系数的崩滑流危险性区划[J]. 工程地质学报, 22 (6): 1250-1256. doi: 10.13544/j.cnki.jeg.2014.06.032
    罗东海. 2010. 冻融期黄土滑坡实验研究[D]. 西安: 西安科技大学.
    祁生文, 李永超, 宋帅华, 等. 2022. 青藏高原工程地质稳定性分区及工程扰动灾害分布浅析[J]. 工程地质学报, 30 (3): 599-608. doi: 10.13544/j.cnki.jeg.2022-0172
    单博. 2014. 基于3S技术的奔子栏水源地库区库岸地质灾害易发性评价及灾害风险性区划研究[D]. 长春: 吉林大学.
    尚彦军, 金维浚, 伊学涛, 等. 2022. 新源县加朗普特特大型滑坡地质结构探测及老滑坡影响综合研究[J]. 工程地质学报, 30 (3): 760-771. doi: 10.13544/j.cnki.jeg.2021-0430
    唐成敏, 张贤. 2020. 降雨对滑坡、崩塌地质灾害影响分析评价[J]. 城市建设理论研究(电子版), (16): 78. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL202016063.htm
    田仕雄, 张路飞, 孟思宇, 等. 2022. AHP-信息量模型在斜坡类地质灾害易发性评价中的应用[J]. 河北地质大学学报, 45 : 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX202206009.htm
    王朝阳. 2008. 坡向与斜坡稳定性的关系研究[D]. 昆明: 昆明理工大学.
    王存智, 张炜, 李晨冬, 等. 2022. 基于GIS和层次分析法的沙溪流域滑坡地质灾害易发性评价[J]. 中国地质调查, 9 (5): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202205006.htm
    王佳佳, 殷坤龙, 杜娟, 等. 2013. 基于GIS考虑准动态湿度指数的滑坡危险性预测水文-力学耦合模型研究[J]. 岩石力学与工程学报, 32 (S2): 3868-3877. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2111.htm
    王珂, 郭长宝, 马施民, 等. 2016. 基于证据权模型的川西鲜水河断裂带滑坡易发性评价[J]. 现代地质, 30 (3): 705-715. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201603022.htm
    王世宝, 庄建琦, 樊宏宇, 等. 2022a. 基于频率比与集成学习的滑坡易发性评价——以金沙江上游巴塘-德格河段为例[J]. 工程地质学报, 30 (3): 817-828. doi: 10.13544/j.cnki.jeg.2020-639
    王世宝, 庄建琦, 郑佳, 等. 2022b. 基于深度学习的CZ铁路康定-理塘段滑坡易发性评价[J]. 工程地质学报, 30 (3): 908-919. doi: 10.13544/j.cnki.jeg.2021-0115
    王卫东, 刘攀, 龚陆. 2019. 基于支持向量机模型的四川省滑坡灾害易发性区划[J]. 铁道科学与工程学报, 16 (5): 1194-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201905011.htm
    王晓明, 买振军. 2016. 新疆伊犁典型特大型黄土滑坡群成因机制及变形特征[J]. 水利与建筑工程学报, 14 (4): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201604039.htm
    王璇, 师芸, 陈浩. 2022. CF耦合LR模型的地质灾害易发性评价[J]. 测绘通, (11): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202211020.htm
    王雪冬, 张超彪, 王翠, 等. 2022. 基于Logistic回归与随机森林的和龙市地质灾害易发性评价[J]. 吉林大学学报(地球科学版), 52 (6): 1957-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202206016.htm
    王志旺, 李端有, 王湘桂. 2012. 区域滑坡空间预测方法研究综述[J]. 长江科学院院报, 29 (5): 78-85, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201205018.htm
    吴森, 李虎杰, 张魁, 等. 2015. 高程因素对平昌县滑坡灾害发育的敏感性分析[J]. 三峡大学学报(自然科学版), 37 (4): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC201504015.htm
    谢剑明. 2004. 降雨对滑坡灾害的作用规律研究[D]. 武汉: 中国地质大学.
    徐敏, 崔玉龙, 袁文华, 等. 2021. 基于GIS和信息量法的伊犁黄土滑坡易发性评价[J]. 河南城建学院学报, 30 (4): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CJGZ202104005.htm
    许冲, 戴福初, 姚鑫, 等. 2010. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 18 (1): 15-26. http://www.gcdz.org/article/id/8504
    杨华阳, 许向宁, 杨鸿发. 2020. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报, 31 (3): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202003005.htm
    杨淞月, 翁茂芝, 田华, 等. 2021. 湖北省鹤峰县城区滑坡地质灾害风险评价[J]. 安全与环境工程, 28 (1): 144-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202101020.htm
    张小倩, 李明广, 陈锦剑, 等. 2022. 降雨对非饱和残积土中基坑受力变形影响的机理研究[J]. 工程地质学报, 30 (4): 1266-1274. doi: 10.13544/j.cnki.jeg.2020-202
    张娅娣, 师芸, 王佳运, 等. 2023. 新疆伊犁地区滑坡隐患InSAR识别与发育特征研究[J]. 遥感技术与应用, 38 (2): 496-507. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202302024.htm
    赵富萌. 2020. 中巴公路(中国段)地质灾害早期识别和滑坡易发性评价研究[D]. 兰州: 兰州大学.
    赵祈溶, 曹顺红, 文武飞, 等. 2021. 基于证据权法的湖南省石门县皂市水库滑坡易发性评价[J]. 华南地质, 37 (2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC202102009.htm
    周萍, 邓辉, 张文江, 等. 2022. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例[J]. 地理科学, 42 (9): 1665-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202209016.htm
    周有禄, 武小鹏, 李奋, 等. 2018. 冻融循环和干湿交替对黄土力学性质影响的试验研究[J]. 铁道建筑, 58 (4): 98-100, 105. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201804024.htm
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  48
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-07-24
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回