新疆阿勒泰骆驼峰崩塌发育特征及破坏机理

赖润森 张紫昭 陈德斌 刘新宇 于喜坤 刘涛

赖润森, 张紫昭, 陈德斌, 等. 2023. 新疆阿勒泰骆驼峰崩塌发育特征及破坏机理[J]. 工程地质学报, 31(4): 1186-1199. doi: 10.13544/j.cnki.jeg.2023-0141
引用本文: 赖润森, 张紫昭, 陈德斌, 等. 2023. 新疆阿勒泰骆驼峰崩塌发育特征及破坏机理[J]. 工程地质学报, 31(4): 1186-1199. doi: 10.13544/j.cnki.jeg.2023-0141
Lai Runsen, Zhang Zizhao, Chen Debin, et al. 2023. Collapse development characteristics and failure mechanism of Altay Camel Peak in Xinjiang[J]. Journal of Engineering Geology, 31(4): 1186-1199. doi: 10.13544/j.cnki.jeg.2023-0141
Citation: Lai Runsen, Zhang Zizhao, Chen Debin, et al. 2023. Collapse development characteristics and failure mechanism of Altay Camel Peak in Xinjiang[J]. Journal of Engineering Geology, 31(4): 1186-1199. doi: 10.13544/j.cnki.jeg.2023-0141

新疆阿勒泰骆驼峰崩塌发育特征及破坏机理

doi: 10.13544/j.cnki.jeg.2023-0141
基金项目: 

国家自然科学基金项目 41967036

新疆维吾尔自治区重点研发项目 2021B03004-4

2023年新疆维吾尔自治区级大学生创新训练计划项目

详细信息
    作者简介:

    赖润森(1998-),男,硕士生,主要从事地质灾害和地质环境研究工作. E-mail:107552101600@stu.xju.edu.cn

    通讯作者:

    张紫昭(1981-),男,博士,教授,博士生导师,主要从事地质灾害和地质环境方面的科研与教学工作。E-mail:253569481@qq.com

  • 中图分类号: P642.21

COLLAPSE DEVELOPMENT CHARACTERISTICS AND FAILURE MECHANISM OF ALTAY CAMEL PEAK IN XINJIANG

Funds: 

the National Natural Science Foundation of China 41967036

the Key R & D Projects of Xinjiang Uygur Autonomous Region 2021B03004-4

the Innovation Training Program for College Students of Xinjiang Autonomous Region in 2023

  • 摘要: 新疆阿勒泰骆驼峰崩塌位于阿勒泰市重点景区中,对游客、坡前公路及过往人员车辆构成威胁。新疆阿勒泰复向斜褶皱发育复杂,岩体在内外地质作用下劈理和节理等地质构造较为发育,导致该地区崩塌地质灾害危害程度较高。为有效防控阿勒泰市骆驼峰崩塌灾害,综合利用野外地质调查、InSAR监测、节理统计及理论分析等方法,探明了骆驼峰崩塌危岩体的几何形态和变形破坏特征,揭示了其成因和破坏机理。结果表明,研究区以滑移式崩塌为主,共分为崩塌区、陡崖斜坡和堆积区3个区段;得到最优势节理结构面曲线产状为37°∠70°,总结出该崩塌共存在3种岩体破坏模式;崩塌失稳模式为卸荷-拉裂-滑移,破坏机理可总结为地质构造-地形高差-节理结构面剪切-岩性差异性风化-水、冻融作用等因素诱发-岩体拉裂卸荷等多方面共同作用导致崩塌的变形破坏。研究成果可为阿勒泰骆驼峰景区地质灾害防灾减灾、景区开发规划提供参考,也为类似地区的凝灰岩崩塌灾害的发育特征及破坏机理研究提供借鉴。
  • 图  1  阿勒泰骆驼峰崩塌地理位置图(影像来自Google Earth)

    Figure  1.  Altay camel peak collapse location map(Image from Google Earth)

    图  2  骆驼峰崩塌典型工程地质剖面图

    Figure  2.  Typical engineering geological profile of Luotuofeng collapse

    图  3  骆驼峰地层岩性特征

    Figure  3.  The lithology characteristics of Luotuofeng formation

    图  4  骆驼峰崩塌落石位置及规模

    Figure  4.  The location and scale of the collapse rockfall in the camel peak

    图  5  “X”型节理形态及崩塌体赤平投影图

    a. “X”型节理形态;b. 崩塌体赤平投影图

    Figure  5.  "X" joint morphology and stereographic projection of collapse body

    图  6  骆驼峰崩塌16处危岩体赤平投影图

    Figure  6.  The stereographic projection of 16 dangerous rock masses in Luotuofeng collapse

    图  7  骆驼峰危岩体节理统计图

    a. 节理散点图;b. 倾角统计分组;c. 倾向统计分组;d. 最优势节理结构面

    Figure  7.  Luotuofeng dangerous rock mass joint statistics

    图  8  骆驼峰崩塌InSAR形变速率图

    Figure  8.  InSAR deformation rate diagram of Camel peak collapse

    图  9  骆驼峰形变速率统计图

    Figure  9.  Deformation rate statistics of Camel peak

    图  10  骆驼峰崩塌InSAR形变量图

    a. 骆驼峰崩塌竖直方向形变量图;b. 骆驼峰崩塌水平方向形变量图

    Figure  10.  InSAR deformation map of Camel peak collapse

    图  11  骆驼峰崩塌破坏模式分析(极射赤平投影法)

    Figure  11.  Analysis of collapse failure mode of camel peak(polar stereographic projection method)

    图  12  骆驼峰崩塌失稳破坏模式典型照片

    Figure  12.  Typical photos of collapse failure mode of camel peak collapse

    图  13  骆驼峰崩塌失稳模式图

    Figure  13.  Camel peak collapse instability mode diagram

    图  14  骆驼峰崩塌危岩体分布图

    Figure  14.  The distribution map of the dangerous rock mass of the camel peak collapse

    图  15  卸荷裂隙形状及分布位置图

    Figure  15.  Unloading fracture shape and distribution location diagram

  • An Z L, Guo Y M. 2018. Study on the spatial and temporal distribution of geological disasters in Altay City[J]. Underground Water, 40 (3): 146-147, 175.
    Al-Jabali A M O, Nei L, Al-Maqtary A S, et al. 2009. Causes of rockfalls in AI-Huwayshah area, Yemen[J]. Global Geology, 12 (1): 5-12.
    Bishop A W. 1955. The use of the slip circle in the stability analysis of slopes[J]. Géotechnique, 5 (1): 7-17. doi: 10.1680/geot.1955.5.1.7
    Chen J Y, Li W L, Lu H Y, et al. 2022. Detection of potential landslides in the section from Kagong County to Rumei Town of Lancang River based on In SAR technology[J]. Geological Survey of China, 9 (4): 134-143.
    Chen L Q, Chen C, Gao Z Q, et al. 2014. Study on the preferred plane via hemispherical projection[J]. Science and Technology Innovation Herald, 11 (28): 108-110, 112.
    Du Y, Xie M W, Jiang Y J, et al. 2021. Review on the formation mechanism and early warning of rock collapse[J]. Metal Mine, (1): 106-119.
    Hoek E, Bray J W. 1977. Rock slope engineering[M]. London: The institution of Mining and Metallurgy: 150-259.
    Fei W P, Zhang G Q, Cui H L. 2010. Stability anlysis of unloading rockmass of high slopes[J]. Engineering Journal of Wuhan University, 43 (5): 599-603, 612.
    Feng Y, Ma F S, Gong C C, et al. 2011. Data analysis method for optimized and dominant orientations of joints in rock mass[J]. Journal of Engineering Geology, 19 (6): 887-892.
    Han Y M, Liu Z Y, Fang T H, et al. 2011. The structural-fissures distribution research of hongshi copper[J]. Science Technology and Engineering, 11 (20): 4709-4714.
    Hooper A, Bekaert D, Spaans K, et al. 2012. Recent advance InSAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 514-517 : 1-13.
    Hu B, Huang R Q. 2009. Collapse mechanism and treatment measures of slopes with interbeddings of soft and hard rocks[J]. Journal of Engineering Geology, 17 (2): 200-205.
    Hu H T. 1985. Preliminary investigation on the classification of landfalls[J]. Journal of The China Railway Society, 7 : 90-100.
    Jing X, Yang Z Q. 2017. Research on development rules of collapse and deformation and failure mechanism on north section of the Tianshan Highway[J]. Highway, 62 (6): 297-302.
    Li S Q, Ma Z M, Guo X J. 2006. Metallogenic environment and mineral resources in Altai synclinorium[J]. Mineral Resources and Geology, (2): 116-121.
    Liu C Z. 2010. Mechanism analysis on the Jiweishan rockfall disaster happened in Wulong, ChongQing, June5, 2009[J]. Journal of Engineering Geology, 18 (3): 297-304.
    Liu P, Ma R H. 2016. Analysis of geological disasters in Altay City Xinjiang[J]. Ground Water, 38 (6): 171-172.
    Lu Y, Ma R X, Wang Z P, et al. 2022. Development characteristics and preventive measures of collapse disasters in qing-long gorge scenic area of Taihang Mountains, China[J]. Journal of Earth Sciences and Environment, 44 (4): 593-604.
    Ma X D, Zhou J, Zhang L Q, et al. 2022. Feature extraction and instability analysis of dangerous rock mass along highway in meizoseismal areas[J]. Chinese Journal of Rock Mechanics and Engineering, 41 (S1): 2901-2914.
    Ping T Q. 2014. Joint rock slope stability analysis method and application[D]. Shanghai: Shanghai Jiao Tong University.
    Sarma S K. 1979. Stability analysis of embankments and slopes[J]. Geotechnical Engineering, 105(12): 1511-1524.
    Shi X J, Xing X M, Yerzati Bahti Khan. 2020. Xinjiang Altay Tuofengshan Seismic Station water pipe tilt cave strain observation anomaly verification[J]. Seismological and Geomagnetic Observation and Research, 41 (4): 143-147.
    Strom A L, Korup O. 2006. Extremely large rockslides and rock ava-lanches in the Tien Shan Mountains, Kyrgyzstan[J]. Landslides, 3 (2): 125-136. doi: 10.1007/s10346-005-0027-7
    Tang B. 2021. Experimental research on mechanical properties of tuff under different cycle conditions[D]. Shaoxing: Shaoxing University.
    Wang S, Zhang L Q, Zhou J, et al. 2020. Characteristic analysis and kinematic simulation of rockfall along Shexing Village section of QingHai-Tibet Railway[J]. Journal of Engineering Geology, 28 (4): 784-792.
    Yang L W, Wei Y J, Peng L, et al. 2020. Kinematical characteristics of collapse in red beds in Kangsu Town, Wuqia County, Xinjiang[J]. Journal of Engineering Geology, 28 (3): 520-529.
    Yang S Q, Yin P F, Zhang Y C, et al. 2019. Failure behavior and crack evolution mechanism of a non-persistent jointed ock mass containing a circular hole[J]. International Journal of Rock Mechanics and Mining Sciences, 114 : 101-121. doi: 10.1016/j.ijrmms.2018.12.017
    Zienkiewicz O C, Tayor R L, Zhu J Z. 2005. The finite element method: Its basis and fundamentals[M]. Elsevier.
    Zhang G L, Xu Z. 2018. Study on collapse failure mechanism and secondary failure of unstable rock[J]. Engineering and Technological Research, (14): 6-8.
    Zhang T. 2018. Research progress on the failure mechanism of unstable rock[J]. Geology and Resources, 27 (5): 488-493.
    Zhao S Y, Zheng Y R, Deng W D. 2003. Stability analysis on jointed rock slope by strength reduction FEM[J]. Chinese Journal of Rock Mechanics and Engineering, (2): 254-260.
    Zheng Y R, Zhao S Y. 2004. Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 19 : 3381-3388.
    安兆龙, 郭燕敏. 2018. 阿勒泰市地质灾害时空分布规律研究[J]. 地下水, 40 (3): 146-147, 175. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201803053.htm
    陈俊伊, 李为乐, 陆会燕, 等. 2022. 基于InSAR技术的澜沧江卡贡乡-如美镇段崩滑隐患探测[J]. 中国地质调查, 9 (4): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202204015.htm
    陈丽芹, 陈承, 高兆全, 等. 2014. 基于赤平极射投影法的优势结构面分析[J]. 科技创新报, 11 (28): 108-110, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801008.htm
    杜岩, 谢谟文, 蒋宇静, 等. 2021. 岩体崩塌灾害成因机制与早期预警研究综述[J]. 金属矿山, (1): 106-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101009.htm
    费文平, 张国强, 崔华丽. 2010. 高边坡卸荷岩体稳定性分析[J]. 武汉大学学报(工学版), 43 (5): 599-603, 612. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201005016.htm
    冯羽, 马凤山, 巩城城, 等. 2011. 节理岩体结构面优势产状确定方法研究[J]. 工程地质学报, 19 (6): 887-892. http://www.gcdz.org/article/id/11085
    韩业鸣, 刘正桃, 方同辉, 等. 2011. 红石铜矿裂隙构造分布特征研究[J]. 科学技术与工程, 11 (20): 4709-4714. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201120012.htm
    胡斌, 黄润秋. 2009. 软硬岩互层边坡崩塌机理及治理对策研究[J]. 工程地质学报, 17 (2): 200-205. http://www.gcdz.org/article/id/8381
    胡厚田. 1985. 崩塌分类的初步探讨[J]. 铁道学报, 7 : 90-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198502010.htm
    荆翔, 杨志强. 2017. 天山公路北段崩塌发育规律及变形失稳模式研究[J]. 公路, 62 (6): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201706060.htm
    李思强, 马忠美, 郭旭吉. 2006. 阿勒泰复向斜的成矿环境及其矿产[J]. 矿产与地质, (2): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200602003.htm
    刘传正. 2010. 重庆武隆鸡尾山危岩体形成与崩塌成因分析[J]. 工程地质学报, 18 (3): 297-304. http://www.gcdz.org/article/id/8554
    刘平, 马惠荣. 2016. 新疆阿勒泰市地质灾害浅析[J]. 地下水, 38 (6): 171-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201606067.htm
    吕艳, 马瑞霞, 王祚鹏, 等. 2022. 太行山青龙峡景区崩塌灾害发育特征及防治对策[J]. 地球科学与环境学报, 44 (4): 593-604. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202204002.htm
    马显东, 周剑, 张路青, 等. 2022. 强震区公路沿线崩塌危岩体特征提取及失稳分析[J]. 岩石力学与工程学报, 41 (S1): 2901-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1027.htm
    平曈其. 2014. 节理岩质边坡稳定性分析方法及应用[D]. 上海: 上海交通大学.
    时显军, 邢喜民, 叶尔扎提·巴合提汗. 2020. 新疆阿勒泰驼峰山地震台水管倾斜、洞体应变观测异常核实[J]. 地震地磁观测与研究, 41 (4): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ202004021.htm
    汤斌. 2021. 不同循环条件下凝灰岩物理与力学特性试验研究[D]. 绍兴: 绍兴文理学院.
    王颂, 张路青, 周剑, 等. 2020. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报, 28 (4): 784-792. doi: 10.13544/j.cnki.jeg.2019-519
    杨龙伟, 魏云杰, 彭令, 等. 2020. 新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究[J]. 工程地质学报, 28 (3): 520-529. doi: 10.13544/j.cnki.jeg.2019-109
    张国林, 徐智. 2018. 危岩崩塌破坏机理及二次破坏研究[J]. 工程技术研究, (14): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJCO201814004.htm
    章涛. 2018. 危岩破坏机理的研究进展[J]. 地质与资源, 27 (5): 488-493. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201805012.htm
    赵尚毅, 郑颖人, 邓卫东. 2003. 用有限元强度折减法进行节理岩质边坡稳定性分析[J]. 岩石力学与工程学报, (2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200302020.htm
    郑颖人, 赵尚毅. 2004. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 19 : 3381-3388. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200419037.htm
  • 加载中
图(15)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  32
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-07-27
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回