新疆温宿县卡坡土质崩塌群形成机理与失稳模式研究

刘新宇 张艳阳 张紫昭 史光明 王双成 赖润森 陈德斌

刘新宇, 张艳阳, 张紫昭, 等. 2023. 新疆温宿县卡坡土质崩塌群形成机理与失稳模式研究[J]. 工程地质学报, 31 (4): 1167-1185. doi: 10.13544/j.cnki.jeg.2023-0167
引用本文: 刘新宇, 张艳阳, 张紫昭, 等. 2023. 新疆温宿县卡坡土质崩塌群形成机理与失稳模式研究[J]. 工程地质学报, 31 (4): 1167-1185. doi: 10.13544/j.cnki.jeg.2023-0167
Liu Xinyu, Zhang Yanyang, Zhang Zizhao, et al. 2023. Formation mechanism and instability model of Kapo soil collapse group in Wensu County, Xinjiang[J]. Journal of Engineering Geology, 31(4): 1167-1185. doi: 10.13544/j.cnki.jeg.2023-0167
Citation: Liu Xinyu, Zhang Yanyang, Zhang Zizhao, et al. 2023. Formation mechanism and instability model of Kapo soil collapse group in Wensu County, Xinjiang[J]. Journal of Engineering Geology, 31(4): 1167-1185. doi: 10.13544/j.cnki.jeg.2023-0167

新疆温宿县卡坡土质崩塌群形成机理与失稳模式研究

doi: 10.13544/j.cnki.jeg.2023-0167
基金项目: 

国家自然科学基金项目 41967036

新疆维吾尔自治区重点研发任务专项资助项目 2021B03004-4

详细信息
    作者简介:

    刘新宇(1997-),男,硕士生,主要从事地质灾害快速识别研究工作. E-mail: 1043785531@qq.com

    通讯作者:

    张艳阳(1989-),男,硕士,实验师,主要从事地质灾害和地质环境方面的科研与教学工作. E-mail: zyy@xju.edu.cn

  • 中图分类号: P642.21

FORMATION MECHANISM AND INSTABILITY MODEL OF KAPO SOIL COLLAPSE GROUP IN WENSU COUNTY, XINJIANG

Funds: 

the National Natural Science Foundation of China 41967036

the Key R&D Project of Xinjiang Uygur Autonomous Region 2021B03004-4

  • 摘要: 土质崩塌是一种危险性极高且广泛分布的地质灾害,是当前地质灾害领域研究的热点问题。近年来阿克苏地区一带土质崩塌灾害发灾频率显著上升,尤其是以温宿县卡坡区域为中心的土质崩塌群最为典型,由于该区域受地形地貌、复杂地层、侵蚀作用等影响,至今仍存在众多崩塌隐患点,严重威胁周边居民的生命财产安全。本研究以温宿县卡坡崩塌群为研究对象,通过野外调查、收集资料、理论分析等手段,阐述了卡坡崩塌群地质灾害的基本特征和类型,深入剖析其影响因素及形成机理,对失稳模式过程进行归纳总结,并根据崩塌失稳过程的演化关系,总结灾害的启动规律与演化模式。研究结果表明,卡坡崩塌群的形成是多因素相耦合的结果,其中土体自身性质和降雨是最重要的影响因素;研究区崩塌多以倾倒式为主,针对该类型的运动失稳模式,本文从节理裂隙发育、降雨入渗、坡脚凹腔破坏和土体强度变化等多角度出发,将研究区倾倒式崩塌的失稳演化过程归纳为“节理裂隙-凹腔发育阶段→水-节理面作用阶段→危岩体沿支撑点的倾倒运动阶段→崩塌体的失稳堆积阶段”4个过程。本文的研究成果能为该地区及类似土质崩塌的形成机理和失稳规律的系统性研究提供借鉴意义和理论支撑。
  • 图  1  研究区北部危岩带及崩塌点分布图

    Figure  1.  Distribution map of dangerous rock zone and collapse points in the north of the study area

    图  2  研究区南部危岩带及崩塌点分布图

    Figure  2.  Distribution map of dangerous rock zone and collapse points in the south of the study area

    图  3  研究区崩塌地理位置图

    Figure  3.  Location map of the collapses in the study area

    图  4  研究区典型崩塌发育照片

    a. 粮仓南侧中位危岩带崩塌;b. 林场路西侧中位危岩带;c. 中位危岩带坡脚崩积物;d. 高台墓区东侧坠落式崩塌

    Figure  4.  Photos of the typical collapse development in the study area

    图  5  典型地层特征剖面及地质剖面模型

    Figure  5.  Typical stratigraphic characteristic profile and geological profile model

    图  6  研究区地质剖面图

    Figure  6.  Geological profile map of the study area

    图  7  典型崩塌点全貌及结构面特征

    Figure  7.  Full picture and structural surface features of typical collapse points

    图  8  降雨量、温度与崩塌灾害史拟合图

    Figure  8.  Fit diagram of rainfall,temperature and collapse disaster history

    图  9  典型坡面形态的崩塌点全貌

    a. 凸性崩塌;b. 直线型崩塌;c. 阶梯型崩塌;d. 凹型崩塌

    Figure  9.  The overall collapse point of the typical slope form

    图  10  崩塌与坡体特征关系

    Figure  10.  The relationship between collapse and slope body characteristics

    图  11  崩塌与坡体特征比率关系图

    Figure  11.  Diagram of the characteristic ratio between collapse and slope body

    图  12  斜坡变形破坏特征

    a. 坡顶落水洞;b. 坡前细长冲沟;c. 垂直节理裂隙;d. 坡脚处凹腔

    Figure  12.  Full view of the dangerous rock zone and the collapse point in the study area

    图  13  土体颗粒堆积与坡顶水土流失

    Figure  13.  Soil particle accumulation and soil erosion at slope top

    图  14  坡顶受风化形成临空面

    Figure  14.  The top of the slope is weathered to form an empty surface

    图  15  各影响因素实例图

    a. 土体自身直立;b. 入渗通道;c. 坡脚侵蚀;d. 坡顶土遗址

    Figure  15.  Example diagram of each influencing factor

    图  16  崩塌影响因素示意图

    Figure  16.  Schematic diagram of the collapse influencing factors

    图  17  倾倒式崩塌应力变化云图

    Figure  17.  Cloud change of dumping collapse stress

    图  18  运动失稳阶段划分

    a. 节理发育;b. 贯通裂隙;c. 凹腔发育;d. 失稳后堆积

    Figure  18.  Division of the motor instability stages

    图  19  崩塌失稳演化示意图

    Figure  19.  A Schematic diagram of the collapse-induced instability evolution

    图  20  发育有凹腔和垂直节理的典型崩塌体

    Figure  20.  Develop collapse with concave cavity and vertical joints

    表  1  研究区崩塌灾害特征统计表

    Table  1.   Statistical table of collapse disasters in study area

    灾害点 崩塌体体积/m3 堆积体体积/m3 危岩带分布 崩塌方式 成因 坡型 坡度/(°) 坡向/(°) 坡高H/m
    BT1 1000~200 52 中位 倾倒式 降雨、风化 凸型 80 108 28
    BT2 800~1500 1~25 中位 倾倒式 降雨、风化 凸型 72 125 25
    BT3 500~2000 55 中位 坠落式 降雨、风化 凸型 70 153 18
    BT4 800~2000 65 低位 倾倒式 降雨、风化 直线型 65 250 14
    BT5 5000 130 中位 倾倒式 降雨、风化 直线型 80 195 26
    BT6 6000 20 中位 倾倒式 降雨、风化 直线型 85 260 30
    BT7 4500 18 中位 倾倒式 降雨、风化 凸型 80 170 35
    BT8 3800 中位 倾倒式 降雨、风化 直线型 84 165 29
    BT9 5~15 5~10 中位 倾倒式 降雨、风化 阶梯型 76 85 34
    BT10 10~30 15~30 中位 倾倒式 降雨、风化 直线型 75 90 26
    BT11 50~70 40~50 中位 倾倒式 降雨、风化 凸型 75 155 33
    BT12 900 110 中位 倾倒式 降雨、风化 直线型 68 205 20
    BT13 850 65 中位 倾倒式 降雨、风化 凹型 73 185 27
    BT14 1300 中位 倾倒式 降雨、风化 直线型 80 300 31
    BT15 60 18 低位 倾倒式 降雨、风化 阶梯型 80 90 15
    BT16 45 25 低位 坠落式 降雨、风化 凸型 84 190 13
    BT17 90 10~50 中位 坠落式 降雨、风化 凸型 78 85 24
    BT18 20~200 20 中位 坠落式 降雨、风化 直线型 85 124 25
    BT19 10~70 中位 倾倒式 降雨、风化 凸型 82 130 30
    BT20 200~1000 中位 倾倒式 降雨、风化 直线型 79 205 28
    BT21 200~500 16 中位 倾倒式 降雨、风化 阶梯型 83 255 31
    BT22 2~10 8 中位 坠落式 降雨、风化 直线型 80 240 27
    BT23 200 中位 倾倒式 降雨、风化 直线型 83 295 33
    BT24 300 30 低位 倾倒式 降雨、风化 直线型 85 160 14
    BT25 600 12 低位 倾倒式 降雨、风化 阶梯型 81 234 12
    BT26 500 10 低位 倾倒式 降雨、风化 直线型 81 246 10
    BT27 500~900 低位 倾倒式 降雨、风化 凸型 85 90 14
    BT28 2~10 4 中位 倾倒式 降雨、风化 直线型 76 178 29
    BT29 5~60 低位 坠落式 降雨、风化 凹型 78 193 15
    BT30 10~200 50 中位 倾倒式 降雨、风化 直线型 70 290 25
    下载: 导出CSV

    表  2  土体物理力学参数

    Table  2.   Physical and mechanical parameters of the soil

    重度/kN·m-3 内摩擦角/(°) 黏聚力
    c/kPa
    弹性模量
    E/kPa
    泊松比
    坡体参数 17.64 21.90 40 75000 0.35
    下载: 导出CSV
  • Chau K T,Wong R H C,Wu J J. 2002. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Sciences,39 (1): 69-77. doi: 10.1016/S1365-1609(02)00016-3
    Chen X R, Liu H Q, Yang J H, et al. 2023. Analysis on the motion characteristics of seismic crack sliding collapse: Taking Zhangjiagou 2# collapse as an example[J]. Water Resources and Hydropower Engineering, 54 (4): 140-150.
    Derbyshire E, Meng X M, Dijkstra T A. 2000. Landslides in the thick loess terrain of North-West China[M]. Chichester, U.K. : John Wiley & SonsLtd.
    Dou Z, Liu Y M, Zhou Z F, et al. 2022. Improvement of rainfall boundary treatment based on single and double permeable media[J]. Rock and Soil Mechanics, 43 (3): 789-798.
    Dun J W, Feng W K, Yi X Y, et al. 2022. Early InSAR identification of active landslide before impoundment in Baihetan reservoir area—a case study of Hulukou Town Xiangbiling section[J]. Journal of Engineering Geology, 31 (2): 479-492.
    Feng L, Lin H, Zhang M S, et al. 2020. Development and evolution of loess vertical joints on the Chinese Loess Plateau at different spatiotemporal scales[J]. Engineering Geology, 265: 105372. doi: 10.1016/j.enggeo.2019.105372
    Gao Y C, Nan S, Xu R G. 2014. Classification and study of slope collapse induced by Lushan earthquake[J]. Highway, 59 (2): 71-76.
    Guo L, Li J R, Wang B Q, et al. 2020. Laboratory test of stability of post-earthquake collapse rockfill[J]. Journal of Natural Disasters, 29 (5): 182-190.
    Hu L Y, Zhang P, Huang B L. 2022. Long-term deformation and failure mechanism of dangerous rock mass in water-level-fluctuation zone of Three Gorges Reservoir area: a case study of Guanmuling[J/OL]. Journal of Engineering Geology, 2022-10-11, https://doi.org/10.13544/j.cnki.jeg.2022-0260.
    Kong J X, Zhuang J Q, Peng J B, et al. 2021. Spatial and temporal distribution characteristics and risk simulation of loess micro geomorphic disaster chain in Laolang Gully, Lanzhou[J]. Journal of Engineering Geology, 29 (5): 1401-1415.
    Li H L, Gao B, Zhang J J, et al. 2022. Mechanism of rockfall coupled with endogenic and exogenic geological processes: A case study in the upper Triassic limestone mines in the Qamdo area, eastern Tibet[J]. Journal of Geomechanics, 28 (6): 995-1011.
    Li H, Ju N P, Zheng D, et al. 2013. Mechnisim of rockfall with crock-toppling mode at upstream of yangshui river basin in guezhou province[J]. Journal of Engineering Geology, 21 (2): 289-296.
    Li L P, Lan H X. 2015. Probabilistic modeling of rockfall trajectories: a review[J]. Bulletin of Engineering Geology and the Environment, 74 (4): 1163-1176. doi: 10.1007/s10064-015-0718-9
    Li T L, Wang H, Fu Y K, et al. 2014. Test simulation on the forming mechanism of loess vertical joints[J]. Journal of Earth Science and Environment, 36 (2): 127-134.
    Li X, Li S D, Chen J, et al. 2008. Coupling effect mechanism of endogenic and exogenic geological processes of geological hazards evolution[J]. Chinese Journal of Rock Mechanics and Engineering, 27 (9): 1792-1806.
    Li Y, He K, Hu X W, et al. 2022. Formation characteristics and kinematics 3-D simulation of rockfall evolved from shattered mountain—Case study of Sanguanmiao Village rockfall in Wenchuan County[J]. Journal of Engineering Geology, 30 (2): 542-552.
    Li Z, Zhao L. 2022. Research and practice on systematic management of mountains, rivers, forests, fields, lakes, grasslands, and sands in the northwest arid zone—Taking the Tarim River important headwaters area as an example[J]. Natural Resource Economics of China, 35 (12): 13-18, 63.
    Liu K, Xiao Y, Yang H J, et al. 2023. Evolution characteristics of Golmud River runoff based on SWAT model[J]. Journal of Engineering Geology, 31 (2): 584-595.
    Liu L, Li J F, Wang X P. 2015. Features on gully erosion and tunnel erosion in loess hilly and gully region[J]. Bulletin of Soil and Water Conservation, 35 (1): 14-19.
    Liu X Y. 2019. Failure modes and early identification of typical loess collapse in Shanxi[J]. Journal of Yangtze River Scientific Research Institute, 36 (11): 69-75.
    Ma P H, Peng J B. 2022a. On loess geohazards chain(1)[J]. Journal of Natural Disasters, 31 (2): 1-11.
    Ma P H, Peng J B. 2022b. On loess geohazards chain(2)[J]. Journal of Natural Disasters, 31 (3): 15-24.
    Ma X D, Zhou J, Zhang L Q, et al. 2022. Feature extraction and instability analysis of dangerous rock mass along highway in meizoseismal areas[J]. Chinese Journal of Rock Mechanics and Engineering, 41 (S1): 2901-2914.
    Mao J R, Wu X. 2020. Influencing factors and temporal and spatial distribution characteristics of loess collapse in Shanxi province[J]. Science Technology and Engineering, 20 (10): 3799-3807.
    Mona E M, Tarek E F, Mohammed E K. 2015. Experimental study on the determination of small strain-shear modulus of loess soil[J]. HBRC Journal, 12 (2): 1-9.
    Peng J B, Sun P, Igwe O, et al. 2018. Loess caves, a special kind of geohazard on loess plateau, northwestern China[J]. Engineering Geology, 236 : 79-88. doi: 10.1016/j.enggeo.2017.08.012
    Peng J B, Wang S K, Wang Q Y, et al. 2019. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 170 : 329-350. doi: 10.1016/j.jseaes.2018.11.015
    Sadeghi H, Kiani M, Sadeghi M, et al. 2019. Geotechnical characterization and collapsibility of a natural dispersive loess[J]. Engineering Geology, 250 : 89-100. doi: 10.1016/j.enggeo.2019.01.015
    Sun C, Tang C S, Cheng Q, et al. 2022. Stability of soil slope under soil-atmosphere interaction[J]. Earth Science, 47 (10): 3701-3722.
    Sun J Z. 2005. Loessology[M]. Hong Kong: Hong Kong Archaeological Society.
    Tang L C. 2017. Formation-motion mechanism of the loess collapse in Fahua temple, Xi'an city[D]. Xi'an: Xi'an University of Science and Technology.
    Wang G L, Wu F Q, Qi S W, et al. 2013. Mechanism and assessment methods for plastic flow and tensile crack-type collapse[J]. Chinese Journal of Rock Mechanics and Engineering, 32 (S1): 2863-2869.
    Wang G L, Zhang M S, Su T M, et al. 2011. Collapse failure mode and DEM numerical simulation for loess slopes[J]. Journal of Engineering Geology, 19 (4): 541-549.
    Wang G L, Zhang M S, Su T M, et al. 2011. Collapse failure mode and DEM numerical simulation for loess slopes[J]. Journal of Engineering Geology, 19 (4): 541-549.
    Wang H, Guo H J, Wang Y M, et al. 2022. Analysis on the main structural factors controlling rockfalls in downtown of Ansai, Shaanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 33 (3): 51-60.
    Wang J D, Gu T F, Zhang M S, et al. 2019. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms, 44 (6): 1317-1329. doi: 10.1002/esp.4575
    Wang J, Wang G L, Song F, et al. 2021. Failure mechanism of cantilever beam in near-horizontal layered sand-mudstone interbedded slope—A case study in Niugouchuan River Bank Collapse[J]. Journal of Catastrophology, 36 (1): 207-211, 222.
    Wang S K, Peng J B, Zhuang J Q, et al. 2019. Underlying mechanisms of the geohazards of macro Loess discontinuities on the Chinese Loess Plateau[J]. Engineering Geology, 263: 105357. doi: 10.1016/j.enggeo.2019.105357
    Wang X G. 2017. Study on the development characteristics and treatment engineering measures of Kapo collapse disaster in Wensu Town, Wenshu County[J]. Underground Water, 39 (4): 208-209, 212.
    Wamg Y G, Kuang S F, Su J L. 2016. Critical caving erosion width for cantilever failures of river bank[J]. International Journal of Sediment Research, 31 (3): 220-225. doi: 10.1016/j.ijsrc.2016.05.003
    Wang Y P, Xu Q. 2020. Study of failure mechanism and instability criterion of cantilever collapse based on Mohr criterion of quadratic parabola[J]. Rock and Soil Mechanics, 41 (12): 3968-3978, 3995.
    Wei Z F, Yan H J, Ying Z M, et al. 2022. Formation mechanism and preventional of Beishan Mountain front collapse in Xining[J]. Science Technology and Engineering, 22 (20): 8597-8605.
    Wu X X, Wei Q J, Yu Z Y. 2010. Features of environmental geology and geological disasters in Wensu County, Xinjiang[J]. Arid Zone Research, 27 (2): 284-289. doi: 10.3724/SP.J.1148.2010.00284
    Xiong L Y, Tang G A, Yuan B Y, et al. 2014. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models[J]. Science China Earth Sciences, 57 (8): 1944-1952. doi: 10.1007/s11430-014-4833-4
    Xu J, Zheng X, Wang Z Q. 2018. Investigation for water and salt migrations on spalling disease of loess slope caused by salification erosion[J]. Journal of Engineering Geology, 26 (3): 741-748.
    Xue Q, Zhang M S, Dong Y, et al. 2023. Refinement risk identification of loess geo-hazards based on DEM and remote sensing—Take Mizhi County in the Loess Plateau of Northern Shaanxi as an example[J]. Geology in China, 52 (3): 926-942.
    Yang C. 2020. Analysis of the influence of rainfall and excavation methods on the stability of loess slopes—Taking a slope in Qingjian County, Yulin City as an example[D]. Xi'an: Chang'an University.
    Yang L W, Wei Y J, Peng L, et al. 2020. Kinematical characteristics of collapse in red beds in Kangsu Town, Wuqia County, Xinjiang[J]. Journal of Engineering Geology, 28 (3): 520-529.
    Ye W J, Dong X H, Yang G S, et al. 2013a. Stability criterion and influencing zone of loess collapse with toppling style[J]. Rock and Soil Mechanics, 34 (S2): 242-246, 251.
    Ye W J, Wang P, Yang G S, et al. 2013b. Formative factors of loess collapse and method for determination its influence range[J]. Journal of Engineering Geology, 21 (6): 920-925.
    Zhang L, Zhang L L, Cheng Y, et al. 2014. Slope stability under rainfall infiltration considering internal erosion[J]. Chinese Journal of Geotechnical Engineering, 36 (9): 1680-1687.
    Zhang M S, Hu W, Sun P P, et al. 2016. Advances and prospects of water sensitivity of loess and the induced loess landslides[J]. Journal of Earth Environment, 7 (4): 323-334.
    Zhang M S, Sun C Y, Xiao P X, et al. 2007. A demonstration project for detailed geo-hazard survey in the Baota district, Yan'an[J]. Northwest Geology, 40 (2): 29-55.
    Zhang Q H, Peng G Z, Fu S L, et al. 1998. System identification of deformation-failure for the dangerous rock body of Lianzi cliff[J]. Chinese Journal of Rock Mechanics and Engineering, 17 (5): 544-551.
    Zhang Z Y, Wang S T, Wang L S. 1981. Principles of engineering geological analysis[M]. Beijing: Geological Publishing House.
    Zheng W H. 2019. Study on the influence of joints on the stability of surrounding rock in Loess tunnel[D]. Xi 'an: Chang'an University.
    陈锡锐, 刘虹强, 杨剑红, 等. 2023. 震裂滑移式崩塌运动特征分析: 以宝兴县张家沟2#崩塌为例[J]. 水利水电技术(中英文), 54 (4): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202304013.htm
    窦智, 刘一民, 周志芳, 等. 2022. 基于单、双重渗透介质降雨边界处理的改进[J]. 岩土力学, 43 (3): 789-798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202203022.htm
    顿佳伟, 冯文凯, 易小宇, 等. 2023. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例[J]. 工程地质学报, 31 (2): 479-492. doi: 10.13544/j.cnki.jeg.2022-0016
    高延超, 南帅, 徐如阁. 2014. 芦山地震中公路边坡崩塌形成机理分类研究[J]. 公路, 59 (2): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201402014.htm
    郭亮, 李婧铷, 王保权, 等. 2020. 震后崩塌堆石体稳定性室内试验研究[J]. 自然灾害学报, 29 (5): 182-190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202005020.htm
    胡刘洋, 张鹏, 黄波林. 2022. 三峡库区消落带岩体劣化下危岩体长期变形破坏机理——以冠木岭为例[J/OL]. 工程地质学报, 2022-10-11, https://doi.org/10.13544/j.cnki.jeg.2022-0260.
    孔嘉旭, 庄建琦, 彭建兵, 等. 2021. 兰州老狼沟黄土微地貌灾害链时空分布特征与危险性模拟研究[J]. 工程地质学报, 29 (5): 1401-1415. doi: 10.13544/j.cnki.jeg.2021-0435
    黎尤, 何坤, 胡卸文, 等. 2022. 震裂山体崩塌形成特征及运动学三维模拟——以汶川县三官庙村崩塌为例[J]. 工程地质学报, 30 (2): 542-552. doi: 10.13544/j.cnki.jeg.2021-0014
    李洪梁, 高波, 张佳佳, 等. 2022. 内外动力地质作用耦合的崩塌形成机理研究: 以藏东昌都地区上三叠统石灰石矿山采场崩塌为例[J]. 地质力学学报, 28 (6): 995-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202206008.htm
    李霍, 巨能攀, 郑达, 等. 2013. 贵州上洋水河流域拉裂-倾倒型崩塌机理研究[J]. 工程地质学报, 21 (2): 289-296. http://www.gcdz.org/article/id/11279
    李同录, 王红, 付昱凯, 等. 2014. 黄土垂直节理形成机理的试验模拟[J]. 地球科学与环境学报, 36 (2): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201402016.htm
    李晓, 李守定, 陈剑, 等. 2008. 地质灾害形成的内外动力耦合作用机制[J]. 岩石力学与工程学报, 27 (9): 1792-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200809008.htm
    李正, 赵林. 2022. 西北干旱区山水林田湖草沙系统治理研究实践——以塔里木河重要源流区为例[J]. 中国国土资源经济, 35 (12): 13-18, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ202212002.htm
    刘魁, 肖勇, 杨洪杰, 等. 2023. 基于SWAT模型的格尔木河径流演变特征研究[J]. 工程地质学报, 31 (2): 584-595. doi: 10.13544/j.cnki.jeg.2022-0268
    刘向御. 2019. 山西典型黄土崩塌破坏模式及其早期辨识[J]. 长江科学院院报, 36 (11): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201911017.htm
    马鹏辉, 彭建兵. 2022a. 论黄土地质灾害链(一)[J]. 自然灾害学报, 31 (2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202203002.htm
    马鹏辉, 彭建兵. 2022b. 论黄土地质灾害链(二)[J]. 自然灾害学报, 31 (3): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202203002.htm
    马显东, 周剑, 张路青, 等. 2022. 强震区公路沿线崩塌危岩体特征提取及失稳分析[J]. 岩石力学与工程学报, 41 (S1): 2901-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1027.htm
    毛佳睿, 武雄. 2020. 山西省黄土崩塌影响因素及时空分布特征[J]. 科学技术与工程, 20 (10): 3799-3807. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202010001.htm
    孙畅, 唐朝生, 程青, 等. 2022. 土体-大气相互作用下土质边坡稳定性研究[J]. 地球科学, 47 (10): 3701-3722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202210015.htm
    孙建忠. 2005. 黄土学[M]. 香港: 香港考古学会.
    汤廉超. 2017. 西安法华寺黄土崩塌形成-运动机理研究[D]. 西安: 西安科技大学.
    王根龙, 伍法权, 祁生文, 等. 2013. 塑流-拉裂式崩塌机制及评价方法[J]. 岩石力学与工程学报, 32 (S1): 2863-2869. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1036.htm
    王根龙, 张茂省, 苏天明, 等. 2011. 黄土崩塌破坏模式及离散元数值模拟分析[J]. 工程地质学报, 19 (4): 541-549. http://www.gcdz.org/article/id/10052
    王虎, 郭怀军, 王益民, 等. 2022. 陕西安塞城区基岩崩塌主控构造因素分析[J]. 中国地质灾害与防治学报, 33 (3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202203006.htm
    王健, 王根龙, 宋飞, 等. 2021. 近水平层状砂泥岩互层边坡悬臂梁崩塌机理研究——以志丹县牛沟川河流塌岸为例[J]. 灾害学, 36 (1): 207-211, 222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101039.htm
    王晓贵. 2017. 温宿县温宿镇卡坡崩塌灾害发育特征及治理工程措施研究[J]. 地下水, 39 (4): 208-209, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201704078.htm
    王延平, 许强. 2020. 基于二次抛物线型Mohr准则的悬臂式崩塌破坏机制及失稳判据研究[J]. 岩土力学, 41 (12): 3968-3978, 3995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012016.htm
    魏正发, 严慧珺, 应忠敏, 等. 2022. 西宁北山山前崩塌形成机理及防治[J]. 科学技术与工程, 22 (20): 8597-8605. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202220003.htm
    吴现兴, 魏青军, 余中元. 2010. 新疆温宿县环境地质特征与地质灾害[J]. 干旱区研究, 27 (2): 284-289. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201002021.htm
    许健, 郑翔, 王掌权. 2018. 黄土边坡盐蚀剥落病害特征调查及其水盐迁移规律研究[J]. 工程地质学报, 26 (3): 741-748. http://www.gcdz.org/search
    薛强, 张茂省, 董英, 等. 2023. 基于DEM和遥感的黄土地质灾害精细化风险识别——以陕北黄土高原区米脂县为例[J]. 中国地质, 50 (3): 926-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202303018.htm
    杨城. 2020. 降雨与开挖方式对黄土边坡稳定性影响分析[D]. 西安: 长安大学.
    杨龙伟, 魏云杰, 彭令, 等. 2020. 新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究[J]. 工程地质学报, 28 (3): 520-529. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003010.htm
    叶万军, 董西好, 杨更社, 等. 2013a. 倾倒型黄土崩塌稳定性判据及其影响范围研究[J]. 岩土力学, 34 (S2): 242-246, 251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2040.htm
    叶万军, 王鹏, 杨更社, 等. 2013b. 黄土崩塌的形成因素及其影响范围的确定方法[J]. 工程地质学报, 21 (6): 920-925. http://www.gcdz.org/article/id/11366
    张磊, 张璐璐, 程演, 等. 2014. 考虑潜蚀影响的降雨入渗边坡稳定性分析[J]. 岩土工程学报, 36 (9): 1680-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409020.htm
    张茂省, 胡炜, 孙萍萍, 等. 2016. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 7 (4): 323-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201604001.htm
    张茂省, 孙传尧, 校培喜, 等. 2007. 延安市宝塔区地质灾害详细调查示范[J]. 西北地质, 40 (2): 29-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200702003.htm
    张奇华, 彭光忠, 付少兰, 等. 1998. 链子崖危岩体变形破坏系统辨识[J]. 岩石力学与工程学报, 17 (5): 544-551. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.009.htm
    张倬元, 王士天, 王兰生. 1981. 工程地质分析原理[M]. 北京: 地质出版社
    郑伟豪. 2019. 节理对黄土隧道围岩稳定性影响研究[D]. 西安: 长安大学.
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  50
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-07-17
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回