DETERIORATION CHARACTERISTICS OF ILI LOESS PROPERTIES UNDER FREEZE-THAW CYCLES AND THEIR INFLUENCE ON LANDSLIDE STABILITY
-
摘要: 新疆伊犁地区作为我国西北地区气候较敏感区域之一,地质灾害较发育,且地质灾害具有危险性严重、危害程度大、成灾速度快等特点,对社会经济发展影响巨大。为加强地质灾害防治,构建安全的生产生活环境,本文以伊犁地区新源县阿勒马勒镇黄土滑坡为研究对象,综合利用野外地质调查、现场取样、室内试验分析等方法,分析了该地区黄土在冻融循环作用下其强度变化的特征以及对滑坡稳定性的影响。结果表明,随着冻融循环次数的增加,滑坡土体强度出现不同程度劣化,与此同时,滑坡稳定性变化趋势也与土体强度劣化趋势一致。分析认为,在冻融循环作用下,黄土空间结构出现不同程度破坏,造成土颗粒级配及接触类型发生变化,使得土体强度出现不同程度的衰减。滑坡整体稳定性受冻融作用的影响而产生变化,在经历3次冻融循环以后,滑坡稳定性发生突变,之后滑坡长期处于蠕滑状态。在此过程中,黄土滑坡变形失稳区域主要集中在滑坡浅层,变形贯穿区域仅限于上层冻结区域土层,不易出现中深层滑坡,滑坡变形程度较轻。研究成果可为新疆伊犁地区地质灾害防灾减灾提供参考价值,也可为类似地区的黄土滑坡地质灾害研究提供参考。Abstract: As one of the more sensitive climatic regions in northwest China, the Ili region of Xinjiang has more developed geological hazards. The geological hazards are characterized by serious hazards, high degree of danger and rapid disaster formation, which have great impact on social and economic development. In order to strengthen the prevention and control of geological hazards and build a safe production and living environment, this paper takes the loess landslide in Almal Town, Xinyuan County, Ili Region as the research object. It analyses the characteristics of the strength change of the loess in the area under the action of freeze-thaw cycle and the influence on the stability of the landslide using field geological survey, field sampling and indoor test analysis. The results of the study showed that the strength of the landslide soil deteriorated to different degrees as the number of freeze-thaw cycles increased, while the trend of landslide stability was also consistent with the deterioration of soil strength. The analysis suggests that the spatial structure of the loess is damaged to varying degrees by the freeze-thaw cycles, resulting in changes in soil particle gradation and contact type, which causes the soil strength to deteriorate to varying degrees. The overall stability of the landslide is affected by the freeze-thaw action and changes. After three freeze-thaw cycles, the stability of the landslide changes abruptly, after which the landslide is in a long-term creep-slip state. During this process, the deformation and destabilisation area of the loess landslide is mainly concentrated in the shallow layer of the landslide, and the deformation penetration area is limited to the upper frozen area soil layer, which is not easy to occur in the middle and deep layers, and the degree of landslide deformation is relatively light. The research results can provide reference value for the prevention and mitigation of geological disasters in the Ili region of Xinjiang, and provide guidance for the study of geological disasters of loess landslides in similar areas.
-
Key words:
- Freeze-thaw cycles /
- Deterioration /
- Loess landslides /
- Stability analysis
-
表 1 Duncan-Chang双曲线模型分析参数表
Table 1. Table of parameters for Duncan-Chang hyperbolic model analysis
冻融循环次数 含水率/% a Ei (σ1-σ3)ult b Rf (σ1-σ3)f 0 14 0.000 01 100 000 99.1 0.0089 1 99.1 0.000 01 100 000 173.7 0.0058 1 173.11 0.000 008 125 000 219.4 0.0046 1.07 235.32 16 0.000 07 14285.71 94.2 0.01 1 94.2 0.000 01 10 000 359.88 0.0026 0.99 356.88 0.000 05 20 000 418.2 0.0024 0.99 415.2 18 0.000 02 50 000 194.51 0.0033 1 194.51 0.000 03 33333.33 392.82 0.0023 1 392.82 0.000 04 25 000 505.71 0.0017 1 505.71 20 0.000 08 12 500 174.98 0.0051 1.11 194.51 0.000 04 25 000 258.48 0.0035 1.52 392.82 0.000 03 33333.33 400.29 0.0023 1.26 505.71 1 14 0.000 09 11 111.11 71.01 0.0134 1 71.01 0.000 005 200 000 169.73 0.006 0.99 167.73 0.000 005 200 000 367.6 0.0028 0.98 361.86 16 0.0001 10 000 207.93 0.00336 1 207.93 0.00002 50 000 215.7 0.0045 1 215.7 0.000005 200 000 379.21 0.0027 0.99 375.21 18 0.0001 10 000 198.87 0.0041 1 198.87 0.00004 25 000 405.43 0.0021 1 405.43 0.00002 50 000 710.38 0.0012 1 710.38 20 0.00009 11111.11 157.7 0.0055 1 157.7 0.00004 25 000 225.6 0.004 1 225.6 0.00002 50 000 343.5 0.0028 1 343.85 3 14 0.00009 11 111.11 96.97 0.135 1 96.97 0.00001 100 000 158.32 0.0059 0.97 154.32 0.000009 111111.1 372.09 0.0049 0.98 365.09 16 0.00007 14285.71 188.51 0.0047 1 188.51 0.00001 10 000 235.73 0.0042 991.52 233 729 0.00005 20 000 380.98 0.0041 0.96 363.98 18 0.00002 50 000 193.12 0.0029 1 193.12 0.00003 33333.33 429.96 0.002 1 429.96 0.0001 10 000 498.31 0.001 1 498.31 20 0.00005 20 000 136.54 0.00008 1 136.54 0.00001 10 000 221.59 0.0041 1 221.59 0.00002 50 000 321.66 0.0029 1 321.66 5 14 0.00006 16 666.67 96.97 0.011 1 96.97 0.000008 125 000 157.32 0.0067 0.98 154.32 0.000009 111111.1 366.09 0.0027 1 365.09 16 0.00009 11111.11 168.9 0.0052 1 168.9 0.00003 33333.33 271.97 0.0034 1 271.97 0.0000008 1 250 000 302.34 0.0036 0.99 299.34 18 0.0001 10 000 181.96 0.0046 1 181.96 0.00003 33333.33 473.07 0.0018 1 473.07 0.00001 10 000 625.24 0.0015 1 625.24 20 0.0001 10 000 127.54 0.007 0.97 127.54 0.000 03 33333.33 299.8 0.0031 1 299.8 0.00002 50 000 332.37 0.0028 1 332.37 7 14 0.00004 25 000 85.94 0.001 1 85.94 0.00002 50 000 284.34 0.0034 1 284.4 0.000004 250 000 334.49 0.003 1 334.49 16 0.0001 10 000 184.6 0.004 1 184.6 0.00001 100 000 291.2 0.0033 0.98 285.76 0.00002 50 000 344 0.0039 0.98 338.8 18 0.00007 14285.71 251.66 0.0033 1 251.66 0.00002 50 000 420.86 0.002 1 420.86 0.00001 10 000 635.99 0.0015 1 635.39 20 0.00007 14285.71 165.85 0.0055 1 165.85 0.00004 25 000 265.83 0.0035 1 265.83 0.00002 50 000 383.79 0.0025 1 383.79 10 14 0.000 03 33333.33 77.33 0.408 1 77.33 0.000 03 33333.33 276.74 0.0033 1 276.74 0.000007 142857.1 406.53 0.0024 1 406.3 16 0.00007 14285.71 149.83 0.006 1 149.83 0.00002 50 000 283.31 0.0034 1 283.31 0.000002 500 000 306.8 0.0036 0.99 303.12 18 0.0001 10 000 199.86 0.0036 1 199.86 0.00001 10 000 399.23 0.0024 1 399.23 0.00002 50 000 498.22 0.0018 1 498.22 20 0.0002 5000 173.71 0.0044 1 173.71 0.00004 25 000 261.18 0.0035 1 261.18 0.00001 10 000 302.37 0.0032 1 302.37 表 2 坡体岩层力学参数表
Table 2. Table of mechanical parameters of the slope rock formations
岩层 冻融循环次数 重度/N·m-3 黏聚力/kPa 内摩擦角/(°) 表层冻融层 0 19.21 32.77 34.89 1 19.21 32.87 34.68 3 19.21 29.37 32.67 5 19.21 34.55 32.76 7 19.21 45.94 30.26 10 19.21 22.7 34.09 粉土 19.92 20.43 22.98 风化层 15.01 6.88 23.32 表 3 滑坡稳定状态划分表
Table 3. Table of landslide stability state classification
滑坡稳定系数Fs Fs<1.0 1.0≤Fs<1.1 1.1≤Fs<1.2 Fs≥1.2 滑坡稳定状态 不稳定 欠稳定 基本稳定 稳定 -
Blijenberg H M. 2007. Application of physical modelling of debris flow triggering to field conditions: Limitations posed by boundary conditions[J]. Engineering Geology, 91 (1): 25-33. doi: 10.1016/j.enggeo.2006.12.010 Chen R, Hao R Y, Li D, et al. 2021. Study on road performance and freeze-thaw resistance of alkali activated material stabilized low-liquid-limit silty clays[J]. Journal of Engineering Geology, 30 (2): 327-337. Gu Q, Wang J D, Si D D, et al. 2016. Effect of freeze-thaw cycles on collapsibility of loess under different moisture contents[J]. Chinese Journal of Geotechnical Engineering, 38 (7): 1187-1192. Harris C, Lewkowicz A G. 2000. An analysis of the stability of thawing slopes, Ellesmere Island, Nunavut, Canada[J]. Canadian Geotechnical Journal, 37 (2): 449-462. doi: 10.1139/t99-118 Huang W J, Mao X S, Wu Q, et al. 2022. Experimental investigation on the shear strength of freeze-thaw interface in fine-grained soil and grey relational analysis[J]. Journal of Engineering Geology, 30 (5): 1477-1484. Jin D W, Niu F J, Li N. 2006. In-situ monitoring and analysis of thaw slumping and deformation in gentle sloping Ground of permafrost soils on Qinghai-Tibet Plateau[J]. Journal of Engineering Geology, 14 (5): 677-682. Jin D W, Sun J F, Fu S L. 2005. Discussion on landslide hazard mechanism of two kinds of low-angle slope in permafrost regions of the Qinghai-Tibet Plateau[J]. Rock and Soil Mechanics, 26 (5): 774-778. Liu J, Fan H M, Zhou L L, et al. 2009. Study on effects of freeze-thaw cycle on bulk density and porosity of black soil[J]. Journal of Soil and Water Conservation, 23 (6): 186-189. Ma J H, Ma K, Xu G W. 2012. Study on fractal geometry of pore distribution in loess-like soils under freeze-thaw cycles[J]. Coal Engineering, (S2): 129-132. Oda M. 1986. An equivalent continuum model for coupled stress and fluid flow analysis in Jointed rock masses[J]. Water Resources Researches, 22 (13): 1845-1856. doi: 10.1029/WR022i013p01845 Qian C. 2018. Study on mechanical properties and structure changes in microscale and mesoscale of loess in Heifangtai under freeze-thaw action[D]. Beijing: China University of Geosciences(Beijing). Shi Z Y, Chen H E, Yuan X Q, et al. 2023. Effect of freezing-thawing cycle on soil dispersion and analysis of microscopic mechanism[J]. Journal of Engineering Geology, 31 (1): 51-59. Song C X, Qi J L, Liu F Y. 2008. Influence of freeze-thaw on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 29 (4): 1077-1086. Viklander P. 1998. Permeability and volume changes in till due to cyclic freeze-thaw[J]. Canadian Geotechnical Journal, 35 (3): 471-477. doi: 10.1139/t98-015 Wang N Q, Yao Y. 2008. Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions[J]. Journal of Disaster Prevention and Mitigation Engineering, 28 (2): 163-166. Xu L, Xue Y, Lu Y, et al. 2016. Test of freeze-thaw cycle of expansive soil under condition of different freezing temperatures[J]. Journal of Water Resources and Water Engineering, 27 (5): 189-193. Xu X Y, Zhong C L, Chen Y M, et al. 1998. Research on dynamic characters of frozen soil and determination of its parameters[J]. Chinese Journal of Geotechnical Engineering, 20 (5): 77-81. Yang A W, Yang S P, Yang S K, et al. 2020. Dynamic performance of municipal sludge solidified soil under freeze-thaw cycle[J]. Journal of Engineering Geology, 30 (4): 1044-1058. Yang A W, Wang B B, Jiang S. 2022. Dynamic characteristics of alkali slag cured lightweight soil under action of dry and wet freezing and thawing[J]. Journal of Engineering Geology, 30 (6): 1962-1973. Yang R H, Zhu B Z. 2010. A Freeze-thaw interface analysis of the influence of the slope embankment stability in permafrost regions[J]. Journal of Lanzhou Jiaotong University, 29 (3): 1-6. Yong R N, Boonsinsuk P, Yin C W P. 1985. Alteration of soil behaviour after cyclic freezing and thawing[C]//International symposium on ground freezing: 187-195. Yu L L, Xu X Y. 2008. Experimental study of artificial freezing of in-situ soils[J]. Low Temperature Architecture Technology, 26 (5): 117-119. Zheng Y R, Chen Z Y, Wang G X, et al. 2007. Engineering treatment of slope & landslide[M]. Beijing: China Communication Press. Zhou Z J, Zhong S F, Liang H. 2013. Test research on change law of highway performance at loess are influenced by number of freeze-thaw cycles[J]. Journal of Chang'an University(Natural Science Edition), 33 (4): 1-6. Zhu S N, Yin Y P, Wang W P, et al. 2019. Mechanism of freeze-thaw loess landslide in Yili River Valley, Xinjiang[J]. Acta Geoscientica Sinica, 40 (2): 339-349. 陈锐, 郝若愚, 李笛, 等. 2021. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报, 30 (2): 327-337. doi: 10.13544/j.cnki.jeg.2021-0134 谷琪, 王家鼎, 司冬冬, 等. 2016. 不同含水率下黄土冻融循环对湿陷性影响探讨[J]. 岩土工程学报, 38 (7): 1187-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607004.htm 黄万俊, 毛雪松, 吴谦, 等. 2022. 细粒土冻融界面抗剪强度试验研究及灰关联分析[J]. 工程地质学报, 30 (5): 1477-1484. doi: 10.13544/j.cnki.jeg.2022-0489 靳德武, 牛富俊, 李宁. 2006. 青藏高原多年冻土区热融滑塌变形现场监测分析[J]. 工程地质学报, 14 (5): 677-682. http://www.gcdz.org/article/id/9061 靳德武, 孙剑锋, 付少兰. 2005. 青藏高原多年冻土区两类低角度滑坡灾害形成机理探讨[J]. 岩土力学, 26 (5): 774-778. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200505024.htm 刘佳, 范昊明, 周丽丽, 等. 2009. 冻融循环对黑土容重和孔隙度影响的试验研究[J]. 水土保持学报, 23 (6): 186-189. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200906043.htm 马骏骅, 马可, 徐贵娃. 2012. 冻融循环作用下黄土状土孔隙分布分形几何研究[J]. 煤炭工程, (增2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ2012S2051.htm 钱程. 2018. 冻融作用下黑方台黄土力学特性及微细观结构变化研究[D]. 北京: 中国地质大学(北京). 师智勇, 陈慧娥, 苑晓青, 等. 2020. 冻融循环对土体分散性的影响及微观机理分析[J]. 工程地质学报, 31 (1): 51-59. doi: 10.13544/j.cnki.jeg.2020-237 宋春霞, 齐吉琳, 刘奉银. 2008. 冻融作用对兰州黄土力学性质的影响[J]. 岩土力学, 29 (4): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200804045.htm 王念秦, 姚勇. 2008. 季节冻土区冻融期黄土滑坡基本特征与机理[J]. 防灾减灾工程学报, 28 (2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200802009.htm 徐学燕, 仲丛丽, 陈亚明, 等. 1998. 冻土的动力特性研究及其参数确定[J]. 岩土工程学报, 20 (5): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC805.016.htm 许雷, 薛洋, 鲁洋, 等. 2016. 不同冻冻结温度条件下膨胀土冻融循环试验[J]. 水资源与水工程学报, 27 (5): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201605035.htm 杨爱武, 王斌彬, 姜帅. 2022. 干湿冻融耦合作用下碱渣固化轻质土动力特性研究[J]. 工程地质学报, 30 (6): 1962-1973. doi: 10.13544/j.cnki.jeg.2021-0259 杨爱武, 杨少朋, 杨少坤, 等. 2020. 冻融循环作用下城市污泥固化土动强度特性研究[J]. 工程地质学报, 30 (4): 1044-1058. doi: 10.13544/j.cnki.jeg.2020-033 杨让宏, 朱本珍. 2010. 冻融交界面变化对于多年冻土区斜坡路堤稳定性的影响分析[J]. 兰州交通大学学报, 29 (3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX201003002.htm 于琳琳, 徐学燕. 2008. 原状土人工冻结试验研究[J]. 低温建筑技术, 26 (5): 117-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW200805056.htm 郑颖人, 陈祖煜, 王恭先, 等. 2007. 边坡与滑坡工程治理[M]. 北京: 人民交通出版社. 周志军, 钟世福, 梁涵. 2013. 冻融循环次数对黄土路用性能影响规律的试验[J]. 长安大学学报(自然科学版), 33 (4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201304000.htm 朱赛楠, 殷跃平, 王文沛, 等. 2019. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报, 40 (2): 339-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902010.htm -