ANALYSIS OF CHARACTERISTICS OF SALINE SOILS AND INFLUENCING FACTORS IN DEBRIS FLOW DISASTER PREVENTION ENGINEERING AREA OF SHACHE COUNTY
-
摘要: 本文对莎车县泥石流防治工程区域2 m范围内的表层土进行了系统性采样,并对其含盐量进行分析,对该区域盐渍土的分布特征、对防治工程的影响、盐渍土的成因及盐渍化影响因素进行深入探讨。研究发现,研究区主要是中、弱盐渍土,强盐渍土的分布区域很小,没有出现超盐渍土。在气象、地形、地下水、地层岩性等因素综合作用下,研究范围内土壤盐分之中各个离子的相对含量由于盐分含量的不断增加出现了规律性改变。平面上分布呈现自南向北逐渐增强的趋势,临近叶尔羌河方向,盐渍化程度越来越高。垂向上,盐渍土出现明显的分带性和表聚性,表层普遍积盐,全区范围内易溶盐总体上呈向下含盐量逐渐降低的趋势;土壤pH值变化随垂向深度增加而增大。研究区内工程病害为结构物裂缝,分为表面裂缝和深部变形裂缝两类,盐分对工程的侵入破坏导致防治工程表面裂缝的产生,盐渍土的盐胀和溶陷特性导致深部变形裂缝的产生。利用SPSS25对盐渍化的影响因素进行回归分析得到,研究区含盐量与矿化度、潜水埋深、高程空间分布吻合度较高,矿化度与研究区土壤含盐量空间相关性最高,且表现为直接影响。研究成果可为莎车县地质灾害防灾减灾、地区开发建设提供参考,并对其他类似地区盐渍土的研究提供借鉴。Abstract: This paper intends to systematically sample the topsoil within 2 m of the debris flow prevention area in Shache County and analyze its saltness. The distribution characteristics of saline soils in the area,the impact on the prevention area,the causes of saline soils and the factors influencing salinization are discussed in depth. It is found that the study area is mainly medium and weakly saline soils,with very small areas of strong saline soils and no hyper saline soils. The relative content of each ion in the soil salinity in the study area changes regularly due to the increasing saltness,under a combination of meteorological,topographical,groundwater and formation lithology factors. The planimetric distribution showed a gradual increase from south to north,with increasing salinization towards the Yarkant River. Upwards,saline soils showed a clear zonation and superficial aggregation,with a general accumulation of salt in the surface layer and a general downward trend in the salinity of eutectic salts throughout the region. Soil pH changes enhance with increasing depth in the vertical direction. The engineering diseases in the study area are structural cracks,which are divided into two categories: surface cracks and deep deformation cracks. The salt intrusion damage to the project is the cause of surface cracks in the prevention and control works. The salt swelling and dissolution characteristics of saline soils lead to the production of deep deformation cracks. Regression analysis of the factors influencing salinity using SPSS25 yielded that the spatial distribution patterns of salinity and mineralization,groundwater depth and elevation in the study area coincided well. Mineralisation enjoys the highest spatial correlation with soil salinity in the study area and showed a direct effect. The results of the study can provide reference for the prevention and mitigation of geological hazards and regional development and construction in Shache County,which provide reference for the study of saline soils in other similar areas.
-
Key words:
- Saline soils /
- Salinity /
- Prevention engineering /
- Spatial distribution /
- Influencing factors
-
表 1 盐渍土含盐量统计特征值及其空间变异系数
Table 1. Saline soil total salt contents and its spatial variation coefficient at different sampling sites
研究区 样本数 最小值 最大值 平均值 中值 极差 标准差 变异系数 含盐量/% 乡镇府周边防治工程区(GC1) 9 0.43 1.57 0.87 0.79 1.14 0.38 0.47 夏合拉村、加依巴格村防治工程区(GC2) 17 0.49 3.70 1.85 1.89 3.21 0.89 0.48 托力坎特村防治工程区(GC3) 22 0.06 2.93 0.85 0.59 2.87 0.78 0.92 托力坎特小学防治工程区(GC4) 8 0.07 4.45 1.26 0.35 4.38 1.747 0.72 达木斯乡8村2组防治工程区(GC5) 19 0.04 1.62 0.65 0.50 1.58 0.51 0.80 吐木休克村防治工程区(GC6) 16 0.03 1.45 0.49 0.29 1.42 0.47 0.95 表 2 盐渍土pH特征值及具体的空间变异系数
Table 2. Saline soil pH characteristic values and specific spatial coefficients of variation
盐渍土特征 研究区 样本数 最小值 最大值 平均值 中值 极差 标准差 变异系数 pH值 乡镇府周边防治工程区(GC1) 9 7.43 8.40 7.69 7.54 0.97 3.34 0.43 夏合拉村、加依巴格村防治工程区(GC2) 17 7.42 8.20 7.59 7.56 0.78 3.80 0.50 托力坎特村防治工程区(GC3) 22 6.66 9.12 7.54 7.69 2.46 3.99 0.50 托力坎特小学防治工程区(GC4) 8 6.52 6.90 6.51 6.67 0.38 3.36 0.50 达木斯乡8村2组防治工程区(GC5) 19 6.74 8.10 7.49 7.50 1.36 3.73 0.50 吐木休克村防治工程区(GC6) 16 6.88 7.48 7.27 7.33 0.60 3.64 0.50 表 3 盐渍土和一般土的三相物质组成
Table 3. Three-phase material composition of saline and general soils
名称 固相划分 备注 盐渍土 称四相:盐溶液相、固相、盐晶相和气相 一般土 称三相:盐溶液相、固相和气相 注:因盐渍土中固相含有土颗粒和盐分,故由①+②+③组成A,其余B、C相与一般土相同 表 4 各因素相关性系数表
Table 4. Table of correlation coefficients for each factor
含盐量 矿化度 高程 潜水埋深 含盐量 1 0.742 -0.446 -0.531 矿化度 0.742 1 -0.328 -0.781 高程 -0.446 -0.328 1 0.479 潜水埋深 -0.531 -0.781 0.479 1 表 5 回归系数表
Table 5. Table of regression coefficients
模型 未标准化系数 标准化系数 t 显著性p B 标准误差 Beta 常量 39.407 8.052 4.894 0 矿化度 3.137 0.483 0.558 1.982 0.043 高程 -0.628 0.006 -0.294 -4.836 0 潜水埋深 -2.413 0.584 -0.352 -4.158 0 -
Ali K, Asghar G V, Farshad R. 2015. Quantitative assessment of parameters that affect strength development in alkali activated fly ash binders[J]. Construction and Building Materials, 5 : 869-876. Chai S X, Yang B Z, Wang X Y, et al. 2008. Analysis of salinization of saline soil in west coast area of Bohai gulf[J]. Rock and Soil Mechanics, 29 (5): 1217-1221, 1226. Chai X P, Yang Z P. 2019. Analysis of soil composition of typical saline soil in Tarim Basin[J]. Journal of Anhui Agricultural Science, 47(8): 183-185. Cheng K Q, Sun R H, Xu S L. 2016. Distribution, origin, structure and corrosion of typical saline soil in Xinjiang coal gas pipeline project[J]. Journal of Engineering Geology, 24 (S1): 316-323. Hong N F. 1998. Corrosion and protection of saline soil for constructions[J]. Industrial Construction, 28 (1): 5-8. Kang M P, Zhao C Z, Bai X. 2021. Spatial heterogeneity and influencing factors of total soil salinity in Sugan Lake wetland[J]. Acte Ecologica Sinica, 41 (6): 2282-2291. Li X Y. 2001. Soil chemistry[M]. Beijing: Higher Education Press: 213-278. Liu K, Zhang Y F, Zhang Y H, et al. 2018. Salt heaving test of sub-chlorine saline soil under cyclic freezing and thawing[J]. Journal of Yangtze River Scientific Restarch Institute, 35 (5): 93-96, 102. Liu Y W, Wang Q, Liu S W, et al. 2019. Experimental investigation of the geotecnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling[J]. Cold Regions Science and Technology, 16 : 32-42. Man D L, Yin H, Cao M Q. 2016. Research progress of concrete durability in saline soil environment[J]. Bulletin of the Chinese Ceramic Society, 35 (11): 3575-3580, 3606. Mei Q Q, Gong X L, Shi Y D, et al. 2020. Study on salinization degree and its influential factors of saline soil in coastal area of Jiangsu province[J]. Journal of Engineering Geology, 28 (5): 959-965. Mukhtar T, Munije A, Nishizaki T, et al. 2008. Distribution and characteristics of salinized soil in the south region of Xinjiang[J]. Environmental Science & Technology, 31 (4): 22-26. Peng W. 2022. Analysis of quantitative structural parameters and elastoplastic constitutive model of saline soil under freeze-thaw cycle[D]. Changchun: Jilin University. Ren X L, Zhang W, Liu X, et al. 2016. The analysis of dynamic spatial distribution characteristic of saline soil salinity in Xining Basin, Qinghai[J]. Journal of Qinghai University(Natural Science Edition), 34 (3): 9-17, 30. Semerjiang M Y. 2017. Mechanisms of saline soil formation and foundation treatment measures in Kashgar region[J]. Shanxi Architecture, 43 (9): 58-60. The National Compilation Group of People's Republic of China. 2009. Code for investigation of geotechnical engineering(GB50021-2001)[S]. Beijing: Architecture & Building Press. Tian L L, Meng X F, Xiong Y C. 2021. Characteristic analysis and treatment resolutions of saline soil in the project on the southern foot of Tianshan Mountain[J]. Subgrade Engineering, (4): 206-211. Tian Q L, Zhu S Y, Lu J, et al. 2019. Study on water and salt transfer law of asphalt road in cold and drought saline area in northwest China[J]. Highway, 64(8): 22-27. Wang G X, Su X S, Zhang Y, et al. 2021. Characteristics of temporal and spatial distribution of salinity in saline soil and its main influencing factors in Xuwei new district of Lianyungang[J]. Safety and Environmental Engineering, 28 (3): 16-24. Wang L L, Zhang W, Zhang W H, et al. 2020. The current situation and prospect of the corrosion of reinforced concrete in saline soils[J]. Science Technology and Engineering, 20 (3): 883-891. Wang P, Chai S X. 2011. Laboratory and in-situ test on solidified saline soils for highway fillings[J]. Journal of Engineering Geology, 19 (3): 440-446. Wei L, Chai S X. 2018. Evaluation of solidifying effect of SH agent on inshore saline soils[J]. Journal of Engineering Geology, 26 (2): 407-415. Xie Y H. 2012. Engineering characteristic on salt soil of alluvial district in Kashgar region and discussion on foundation treatment method[J]. Site Investigation Science and Technology, (2): 25-28, 53. Zhang Y H. 2018. The experimental study on coefficient of collapsibility and salt-frost heaving character about artificial preparation of saline soil in Xinjiang area[D]. Urumqi: Xinjiang Agricultural University. Zhang Y. 2017. Studies on the engineering properties of saline soil of Fengchang to Nileke of Xinjiang S315 highway[D]. Xi'an: Chang'an University. 柴寿喜, 杨宝珠, 王晓燕, 等. 2008. 渤海湾西岸滨海盐渍土的盐渍化特征分析[J]. 岩土力学, 29 (5): 1217-1221, 1226. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200805015.htm 柴学平, 杨赵平. 2019. 塔里木盆地典型盐渍土壤成分分析[J]. 安徽农业科学, 47(8): 183-185. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201908048.htm 陈彦光. 2011. 地理数学方法: 基础和应用[M]. 北京: 科学出版社. 程克强, 孙如华, 徐帅陵. 2016. 新疆典型盐渍土特征及腐蚀性对输气管道工程的影响研究[J]. 工程地质学报, 24 (S1): 316-323. doi: 10.13544/j.cnki.jeg.2016.s1.047 洪乃丰. 1998. 盐渍土对建筑物的腐蚀与防护[J]. 工业建筑, 28 (1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ801.001.htm 康满萍, 赵成章, 白雪. 2021. 苏干湖湿地土壤全盐含量空间异质性及影响因素[J]. 生态学报, 41 (6): 2282-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202106017.htm 李学垣. 2001. 土壤化学[M]. 北京: 高等教育出版社: 213-278. 刘凯, 张远芳, 张运海, 等. 2018. 冻融循环条件下亚氯盐渍土盐冻胀试验研究[J]. 长江科学院院报, 35 (5): 93-96, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201805021.htm 满都拉, 银花, 曹美琪. 2016. 盐渍土环境下混凝土耐久性研究进展[J]. 硅酸盐通报, 35 (11): 3575-3580, 3606. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201611013.htm 梅芹芹, 龚绪龙, 史雅栋, 等. 2020. 江苏沿海盐渍土盐渍化程度及其影响因素分析[J]. 工程地质学报, 28 (5): 959-965. doi: 10.13544/j.cnki.jeg.2020-247 木合塔尔·吐尔洪, 木尼热·阿布都克力木, 西崎·泰, 等. 2008. 新疆南部地区盐渍化土壤的分布及性质特征[J]. 环境科学与技术, 31 (4): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200804005.htm 彭炜. 2022. 冻融循环条件下盐渍土结构性定量化参数分析及弹塑性本构模型研究[D]. 长春: 吉林大学. 任秀玲, 张文, 刘昕, 等. 2016. 青海西宁盆地盐渍土盐分空间动态分布特征分析[J]. 青海大学学报(自然科学版), 34 (3): 9-17, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201603002.htm 色麦尔江·麦麦提玉苏普. 2017. 喀什地区盐渍土形成机理及地基处理措施[J]. 山西建筑, 43 (9): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX201709031.htm 田龙龙, 孟雄飞, 熊玉成. 2021. 天山南麓某工程盐渍土特性分析与处理对策[J]. 路基工程, (4): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC202104044.htm 田秋林, 朱世煜, 陈军, 等. 2019. 西北寒旱区盐渍土水盐迁移规律研究[J]. 公路, 64(8): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201908004.htm 王高祥, 苏小四, 张岩, 等. 2021. 连云港徐圩新区盐渍土盐分时空分布特征及其主要影响因素分析[J]. 安全与环境工程, 28 (3): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202103004.htm 王珑霖, 张文, 张卫红, 等. 2020. 盐渍土腐蚀钢筋混凝土研究现状及展望[J]. 科学技术与工程, 20 (3): 883-891. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202003003.htm 王沛, 柴寿喜. 2011. 固化滨海盐渍土路用性能的室内试验与现场测试[J]. 工程地质学报, 19 (3): 440-446. http://www.gcdz.org/article/id/10037 魏丽, 柴寿喜. 2018. SH固土剂对滨海盐渍土的固化作用评价[J]. 工程地质学报, 26 (2): 407-415. doi: 10.13544/j.cnki.jeg.2017-004 谢蕴华. 2012. 喀什地区山前冲积区盐渍土工程特性及地基处理方法探讨[J]. 勘察科学技术, (2): 25-28, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201202008.htm 张宇. 2017. 新疆S315线蜂场至尼勒克段公路盐渍土工程性质研究[D]. 西安: 长安大学. 张运海. 2018. 新疆地区人工配制盐渍土盐-冻胀及溶陷性试验研究[D]. 乌鲁木齐: 新疆农业大学. 中华人民共和国国家标准编写组. 2009. 岩土程勘察规范(GB50021-2001)[S]. 北京: 中国建筑工业出版社. -