新疆伊犁黄土工程地质特征及致灾机理研究综述

周昌 黄顺

周昌, 黄顺. 2023. 新疆伊犁黄土工程地质特征及致灾机理研究综述[J]. 工程地质学报, 31(4): 1247-1260. doi: 10.13544/j.cnki.jeg.2023-0174
引用本文: 周昌, 黄顺. 2023. 新疆伊犁黄土工程地质特征及致灾机理研究综述[J]. 工程地质学报, 31(4): 1247-1260. doi: 10.13544/j.cnki.jeg.2023-0174
Zhou Chang, Huang Shun. 2023. Mechanical properties and disaster-causing mechanism of loess in Ili,Xinjiang, China[J]. Journal of Engineering Geology, 31(4): 1247-1260. doi: 10.13544/j.cnki.jeg.2023-0174.
Citation: Zhou Chang, Huang Shun. 2023. Mechanical properties and disaster-causing mechanism of loess in Ili,Xinjiang, China[J]. Journal of Engineering Geology, 31(4): 1247-1260. doi: 10.13544/j.cnki.jeg.2023-0174.

新疆伊犁黄土工程地质特征及致灾机理研究综述

doi: 10.13544/j.cnki.jeg.2023-0174
基金项目: 

国家自然科学基金 42207169

新疆维吾尔自治区重点研发计划项目 2021B03004-3

江苏省自然科学基金 BK20221126

中国博士后基金面上项目 2022M710177

详细信息
    通讯作者:

    周昌(1993-),男,博士,讲师,硕士生导师,主要从事工程地质方面的科研与教学工作. E-mail:changzhou@cumt.edu.cn

  • 中图分类号: P642.3

MECHANICAL PROPERTIES AND DISASTER-CAUSING MECHANISM OF LOESS IN ILI, XINJIANG, CHINA

Funds: 

the National Natural Science Foundation of China 42207169

Key R&D Program of Xinjiang Uygur Autonomous Region 2021B03004-3

the Natural Science Foundation of Jiangsu Province BK20221126

China Postdoctoral Science Foundation 2022M710177

  • 摘要: 伊犁黄土具有强湿陷性、高易溶盐含量等地域性特征,成为伊犁谷地地质灾害发育的重要物质基础。本文在总结伊犁谷地黄土的成因、分布、成分及黄土地质灾害分布特征的基础上,分析了含水率、干密度、垂直荷载、易溶盐含量、基质吸力及冻融循环次数对伊犁黄土水-力学特性的影响,总结了伊犁黄土滑坡灾害类型及特性。受谷地喇叭状地形及气候影响,伊犁黄土埋深呈中部深两侧浅分布,粒径由西向东逐渐变细,与黄土滑坡灾害分布呈正相关。伊犁黄土湿陷性受控于垂直荷载,在含水率为8% ~10%达到最大,与干密度呈负相关。伊犁黄土湿陷性与垂直荷载关系符合Biphasic Hill方程。易溶盐含量对伊犁黄土抗剪强度具有重要影响,与黏聚力呈负相关;冻融循环次数增大会导致黄土结构破坏、裂隙率快速增大,伊犁黄土渗透系数先增后减,黏聚力快速减少。从地质结构、动力条件、滑动机制等方面将伊犁黄土滑坡进行分类总结;分别对不同动力成因下的黄土滑坡灾变机理进行阐述。研究成果对伊犁黄土滑坡研究和防治、滑坡灾害预测具有一定的指导意义和适用价值。
  • 图  1  伊犁地区黄土分布

    Figure  1.  Distribution map of loess in Ili Region

    图  2  伊犁谷地剖面年代与地层图

    Figure  2.  Profile chronology and stratigraphic map of Ili Valley

    图  3  伊犁黄土与黄土高原黄土物质组成

    Figure  3.  Material composition of Ili loess and loess plateau

    图  4  伊犁谷地地质灾害与地形地貌分布图

    Figure  4.  Geological hazard and landform distribution map of Ili Valley

    图  5  不同含水率、干密度条件下伊犁黄土湿陷系数变化特征

    Figure  5.  Variation characteristics of collapsibility coefficient of Ili loess under different water contents and dry densities

    图  6  不同含水率条件下伊犁黄土湿陷系数变化特征

    Figure  6.  Variation characteristics of collapsibility coefficient of Ili loess under different water content conditions

    图  7  不同干密度条件下伊犁黄土湿陷系数变化特征

    Figure  7.  Variation characteristics of collapsibility coefficient of Ili loess under different dry densities

    图  8  伊犁黄土湿陷系数变化规律

    Figure  8.  Variation law of collapsibility coefficient of Ili loess

    图  9  (a)不同含水率与(b)不同干密度下伊犁黄土湿陷系数与垂直荷载变化关系

    Figure  9.  Relationship between collapsibility coefficient and vertical load of Ili loess under different water contents(a) and dry densities(b)

    图  10  易溶盐含量与抗剪强度关系

    a. 有效黏聚力与有效摩擦角; b. 不同吸力条件下黏聚力与内摩擦角

    Figure  10.  Relationship between soluble salt content and shear strength: (a) effective cohesion and effective friction angle; (b) cohesion and internal friction angle under different suction conditions

    图  11  偏应力与易溶盐含量关系曲线

    Figure  11.  Relationship curve between deviator stress and soluble salt content

    图  12  伊犁地区2-3月平均极端气温分布及冻融路径

    Figure  12.  The distribution and freezing and thawing path of the average extreme temperature from February to March in Ili region

    图  13  黏聚力与冻融循环次数

    Figure  13.  Cohesion and freeze-thaw cycles

    图  14  内摩擦角与冻融循环次数关系

    Figure  14.  Relationship between internal friction angle and number of freeze-thaw cycles

    图  15  冻融循环条件下黄土(a)渗透系数、(b)内摩擦角、(c)黏聚力定基衰减率

    Figure  15.  Loess under freeze-thaw cycles(a) permeability coefficient,(b) internal friction angle,(c) cohesive force base attenuation rate

    图  16  冻融循环下黄土裂隙率、孔隙分形维数及不同冻融次数下CT扫描图:(a)0次,(b)1次,(c)5次,(d)10次(Shi G M et al., 2022)

    Figure  16.  Correlations of both crack ratio and fractal dimension with freeze-thaw and salt content

    图  17  冻融循环作用下黄土微观结构演化过程示意图(Liu et al., 2021)

    Figure  17.  Schematic diagram of the microstructural evolution of loess with FT cycling

    表  1  伊犁黄土滑坡分类

    Table  1.   Classification of Ili loess landslides

    滑坡类型 动力成因 滑坡带位置 滑动机制 地质结构 典型案例
    黄土层内滑坡 液化型 浅表层 降雨、融雪使土体含水率快速增大,黄土的水敏性及震液性导致浅层发生液化滑移
    冻融型 浅层黄土内滑移 季节性冻融导致浅层黄土结构破坏,形成易滑区 皮里青河“3·24”黄土滑坡、大洪纳海沟滑坡
    冻融+降雨型 黄土内部多层滑动面滑移 冻融导致后缘裂隙产生,降雨使得地表水灌入 则克台滑坡
    黄土-离石黄土滑坡 汇水型 黄土与隔水层界面 双层异质斜坡结构为地下水在界面处汇集形成条件,形成软弱面 加朗普特滑坡群
    黄土-砂砾石-泥岩结构滑坡 种蜂场滑坡、苏阿苏沟东岸黄土滑坡
    黄土-基岩接触面滑坡 大洪纳海沟滑坡
    黄土-泥岩混合型滑坡 降雨型 基岩层间软弱结构面 在自重作用下滑坡体沿着软弱结构面发生蠕滑 乌托巴依萨依滑坡
    下载: 导出CSV
  • Andersland O B,Ladanyi B. 2003. Frozen ground engineering[M]. New York:John Wiley & Sons.
    Cao X H, Meng H, Shang Y J, et al. 2020. The development and distribution of loess landslides in Yili Valley and its caused[J]. Xinjiang Geology, 38 (3): 405-411.
    Chou Y L, Wang L J. 2021. Soil-water characteristic curve and permeability coefficient prediction model for unsaturated loess considering freeze-thaw and dry-wet[J]. Soils and Rocks, 44 (1): 1-11.
    Guo Z K, Zhang Z Z, Mu Y X, et al. 2022. Effect of freeze-thaw on mechanical properties of loess with different moisture content in Yili, Xinjiang[J]. Sustainability, 14(18): 11357. doi: 10.3390/su141811357
    Huang W, Sun C, Xiang W, et al. 2020. Residual strength of loess-gravel interface under snowmelt in Ili valley, Xinjiang[J]. Geological Science and Technology Bulletin, 39 (6): 112-120.
    Huang W. 2020. Study on the mechanism of the loess landslides under the action of the earthquake and snowmelt in the Ili Valley[D]. Wuhan: China University of Geosciences.
    Jing J J, Wu Z J, Yan W J, et al. 2022. Experimental study on progressive deformation and failure mode of loess fill slopes under freeze-thaw cycles and earthquakes[J]. Engineering Geology, 310: 106896. doi: 10.1016/j.enggeo.2022.106896
    Kawamura S, Miura S. 2013. Rainfall-induced failures of volcanic slope subjected to freezing and thawing[J]. Soils Found, 53 (3): 443-461. doi: 10.1016/j.sandf.2013.04.006
    Leng Y Q, Peng J B, Wang Q Y, et al. 2018. A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland[J]. Engineering Geology, 236: 129-136. doi: 10.1016/j.enggeo.2017.05.006
    Li B P, Chen J R, Yang F, et al. 2018. Water migration and its impact on mechanical properties of remolded loess under freeze-thaw cycling conditions[J]. Science, Technology and Engineering, 18 (34): 226-230.
    Li C X, Song Y G, Wang L M. 2012. Distribution, age and dust sources of loess in the Ili Basin[J]. Earth and Environment, 40 (3): 314-320.
    Li G Y, Wang F, Ma W, et al. 2018. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology, 151: 159-167. doi: 10.1016/j.coldregions.2018.03.021
    Li Z Y, Yang G S, Liu H. 2020. The influence of regional freeze-thaw cycles on loess landslides: Analysis of strength deterioration of loess with changes in pore structure[J]. Water, 12(11): 3047. doi: 10.3390/w12113047
    Liang S C, Qiao H, Lü D, et al. 2023. Distribution characteristics and main controlling factors of geohazards in Ili Valley[J]. Arid Land Geography, 46 (6): 880-888.
    Liu B J, Xie Y L, Yu Y C, et al. 2004. In-situ testing study on infiltration in unsaturated loess[J]. Journal of Rock Mechanics and Engineering, 23 (24): 4156-4160.
    Liu C J, Li Q, ChenY B, et al. 2019. Experimental analysis on the thawing characteristics of chlorite saline soil under pressure freeze-thaw cycles[J]. Science, Technology and Engineering, 19 (10): 163-167.
    Liu G R, Yan E C, Lian C. 2002. Discussion on classification of landslides[J]. Journal of Engineering Geology, 10 (4): 339-342.
    Liu J Y, Xing Y C, Zhang A J. 2011. Study of non-linear constitutional equation for humidifying collapse loess[J]. Journal of Northwest A & F University(Natural Science Edition), 39 (1): 210-214, 221.
    Liu K, Ye W J, Jing H J. 2021. Shear strength and microstructure of intact loess subjected to freeze-thaw cycling[J]. Advances in Materials Science and Engineering, (3): 1-15.
    Liu L N, Li S D, Jiang Y, et al. 2017. Failure mechanism of loess landslides due to saturated-unsaturated seepage-case study of Gallente landslide in Yili, Xijiang[J]. Journal of Engineering Geology, 25 (5): 1230-1237.
    Liu L, Li J F, Wang X P. 2015. Features on gully erosion and tunnel erosion in loess hilly and gully region[J]. Bulletin of Soil and Water Conservation, 35 (1): 14-19.
    Liu S L, Wang L Q, Zhang W G, et al. 2023. A comprehensive review of machine learning-based methods in landslide susceptibility mapping[J]. Geological Journal, 58 (6): 2283-2301. doi: 10.1002/gj.4666
    Liu Y, Zhao L J, Bao A M, et al. 2022. Chinese high resolution satellite data and GIS-Based assessment of landslide susceptibility along highway G30 in Guozigou Valley using logistic regression and maxent model[J]. Remote Sensing, 14(5): 3620.
    Liu Y. 2015. Analysis of geological features, cause and stability of the loess landslide[D]. Shihezi: Shihezi University.
    Lu J, Wang T H, Cheng, W C, et al. 2019. Permeability anisotropy of loess under influence of dry density and freeze-thaw cycles[J]. International Journal of Geomechanics, 19(9): 04019103. doi: 10.1061/(ASCE)GM.1943-5622.0001485
    Lü Q L, Zhang Z Z, Zhang T D, et al. 2021. The trend of permeability of loess in Yili, China, under freeze-thaw cycles and its microscopic mechanism[J]. Water, 13(22): 3257. doi: 10.3390/w13223257
    Machalett B, Frechen M, Hambach U, et al. 2006. The loess sequence from Remisowka(northern boundary of the Tien Shan Mountains, Kazakhstan)-Part Ⅰ: Luminescence dating[J]. Quaternary International, 152-153: 192-201.
    Meng Z J, Zhang F, Peng J B, et al. 2022. Model test research on rainfall-type loess landslide under preset joint conditions[J]. Journal of Engineering Geology, 30 (5): 1528-1537.
    Niu S L, Zhang A J, Wang Y G, et al. 2021. Characteristics of compressibility and collapsibility of Ili loess under varying water content and dry density[J]. Journal of Hydroelectric Engineering, 40 (2): 167-176.
    Niu S L, Zhang A J, Wang Y G, et al. 2020a. Effects of NaCl content on water collapsibility and salt collapsibility of undisturbed Ili loess[J]. Chinese Journal of Geotechnical Engineering, 42 (S2): 67-71.
    Niu S L, Zhang A J, Zhao J M, et al. 2020b. Influence of soluble salt content on mechanical properties of Ili undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 42 (9): 1705-1714.
    Peng J B, Lin H C, Wang Q Y, et al. 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22 (4): 684-691.
    Peng J B, Sun P, Igwe O, et al. 2018. Loess caves, a special kind of geohazard on loess plateau, northwestern China[J]. Engineering Geology, 236: 79-88. doi: 10.1016/j.enggeo.2017.08.012
    Peng J B, Wang S K, Wang Q Y, et al. 2019. Distribution and genetic types of loess landslides in China[J]. Engineering Geology, 170: 329-350.
    Qi J L, Guo F, Hui J. 2010. Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions[J]. Cold Regions Science and Technology, 64 (3): 262-270. doi: 10.1016/j.coldregions.2010.04.010
    Shang Y J, Jin W J, Yi X T, et al. 2022. Geological exploration on unique geostructure of super large Zeketai Landslide in Xinyuan County and back analysis on influence of old landslide[J]. Journal of Engineering Geology, 30 (3): 760-771.
    Shi G M, Li X Y, Guo Z K, et al. 2022. Effect of mica content on shear strength of the Yili loess under the dry-wet cycling condition[J]. Sustainability, 14(15): 9569. doi: 10.3390/su14159569
    Shi Y J, Zhang L H, Ma W, et al. 2022. Investigating unfrozen water and its components during freeze-thaw action in loess using a novel NMR technique[J]. European Journal of Soil Science, 73(4): E13262. doi: 10.1111/ejss.13262
    Su Y, Li P, Ren Z, et al. 2020. Freeze-thaw effects on erosion process in loess slope under simulated rainfall[J]. Journal of Arid Land, 12 (6): 937-949. doi: 10.1007/s40333-020-0106-6
    Subramanian S S, Ishikawa T, Tokoro T. 2017. Stability assessment approach for soil slopes in seasonal cold regions[J]. Engineering Geology, 221: 154-169. doi: 10.1016/j.enggeo.2017.03.008
    Wang H Y, Dong S, Li J, et al. 2020. The effect of different compaction conditions on the shear strength of loess[J]. Science and Technology Bulletin, 36 (11): 69-73, 78.
    Wang J J, Liang Y, Zhang H P, et al. 2014. A loess landslide induced by excavation and rainfall[J]. Landslides, 11: 141-152. doi: 10.1007/s10346-013-0418-0
    Wang S, Zeng P, Li T B, et al. 2022. Initiation, movement and impact simulation of soil landslide with material point method[J]. Journal of Engineering Geology, 30 (4): 1362-1370.
    Wang T X, Yang T, Lu J. 2016. Anisotropic effects of dry density and freeze-thaw cycles on the permeability of loess[J]. Soil Mechanics, 37 (S1): 72-78.
    Wei X L. 2017. Formation mechanism and prevention countermeasure for loess landslides along Highway 316 in Xinjiang[J]. Highway, 62 (9): 103-113.
    Wu W J, Wang N Q. 2002. Basic types and active features of loess landslide[J]. The Chinese Journal of Geological Hazard and Control, 13 (2): 36-40.
    Xian Y, Wei X L, Zhou H B, et al. 2022. Snowmelt-triggered reactivation of a loess landslide in Yili, Xinjiang, China: mode and mechanism[J]. Landslides, 19 (8): 1843-1860. doi: 10.1007/s10346-022-01879-7
    Xie B L, Zhang W Y, Sun X L, et al. 2022. Experimental study on the effects of freeze-thaw cycles on strength and microstructure of Xining region loess in China[J]. Buildings, 12(6): 795. doi: 10.3390/buildings12060795
    Xie W L, Wang Y S, Ma Z H, et al. 2015. Besearch status and prospect of loess collapsibilitymechanism[J]. Geoscience, 29 (2): 397-407.
    Xiong L Y, Tang G A, Yuan B Y, et al. 2014. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models[J]. Science China Earth Sciences, 57 (8): 1944-1952. doi: 10.1007/s11430-014-4833-4
    Xu J, Gao J Y, Li Y F, et al. 2019. Experimental study on the uplift bearing capacity model of excavated foundation in coarse-grained saline soil[J]. Journal of Geotechnical Engineering, 41 (11): 2079-2085.
    Xu J, Li Y F, Lan W, et al. 2019. Shear strength and damage mechanism of saline intact loess after freeze-thaw cycling[J]. Cold Regions Science and Technology, 164: 102779. doi: 10.1016/j.coldregions.2019.05.005
    Xu J, Li Y F, Ren C, et al. 2021. Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess[J]. Cold Regions Science and Technology, 181: 103183. doi: 10.1016/j.coldregions.2020.103183
    Xu J, Ren C, Gao J Y, et al. 2021. Permeability characteristics and microscopic mechanism of Na2SO4 saline undisturbed loess under dry wet cycling effect[J]. Journal of Central South University(Natural Science Edition), 52 (5): 1644-1654.
    Xu J, Ren J, Wang Z, et al. 2018. Strength behaviors and meso-structural characters of loess after freeze-thaw[J]. Cold Regions Science and Technology, 148: 104-120. doi: 10.1016/j.coldregions.2018.01.011
    Xu J, Wang Z Q, Ren J W, et al. 2018. Comparative experimental study on the mechanism of freeze-thaw degradation of undisturbed and remolded loess[J]. Journal of Underground Space and Engineering, 14 (3): 643-649.
    Xu Q, Chen W L, Pu C H, et al. 2022. Theoretical and practical approach based on nature-based solutions in disasters control of major engineering in loess plateau[J]. Journal of Engineering Geology, 30 (4): 1179-1192.
    Yang H, Li G, Huang X, et al. 2020. Loess depositional dynamics and paleoclimatic changes in the Yili Basin, Central Asia, over the past 250ka[J]. Catena, 195: 104881. doi: 10.1016/j.catena.2020.104881
    Ye W J, Qiang Y H, Jing H J, et al. 2022. Freeze-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 30 (1): 144-153.
    Ye W, Dong G R, Yuan Y J, et al. 2000. Climatic instability of the Last Glacial Period in yili, xinjiang[J]. Scientific Bulletin, 45 (6): 641-646.
    Yin Y P, Wang L Q, Zhang W G, et al. 2022. Research on the collapse process of a thick-layer dangerous rock on the reservoir bank[J]. Bulletin of Engineering Geology and the Environment, doi: 10.1007/s10064-022-02618-x.
    Yu Q B, Wang Q, Li X H. 2022. Dynamic characteristics and concept expression of soil structure[J]. Journal of Engineering Geology, 30 (6): 1914-1928.
    Zeng M X, Song Y G. 2013. Mineral composition and their weathering significance of Zhaosu loess-Paleosol sequence in the Ili Basin, Xinjiang[J]. Geological Review, 59 (3): 575-586.
    Zeng X, Su J, Liu X, et al. 2022. Experimental study on hydroscopicity and bound water of Gaomiaozi bentonite[J]. Journal of Engineering Geology, 30 (5): 1403-1413.
    Zhang A J, Xing Y C, Hu X L, et al. 2016. Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 38 (S2): 117-122.
    Zhang F Y, Wang G H, Kamal T, et al. 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution[J]. Engineering Geology, 155: 69-79. doi: 10.1016/j.enggeo.2012.12.018
    Zhang H, Zhang Q S. 2019. Relationship between humidification and compression of Yili loess under different humidity conditions[J]. Water Resources and Power, 37 (10): 105-107.
    Zhang H, Zhi B, Liu E, et al. 2020. Study on varying characteristics of temperature field and moisture field of shallow loess in the freeze-thaw period[J]. Advances in Materials Science and Engineering, 1-10.
    Zhang W W, Li Y R, Gong Y Q, et al. 2022. Effects of temperature fluctuation on structural evolution of initial loess deposits[J]. Journal of Engineering Geology, 30 (2): 357-365.
    Zhang W, Zhang A J, Chen J M, et al. 2017. Effect of moisture content and density on collapsibility coefficient of Ili loess[J]. Journal of Northwest A & F University(Natural Science Edition), 45 (5): 211-220.
    Zhao Q Y, Zhang A J, Wang Y G, et al. 2019. Effect of soluble salt content on the strength of original unsaturated Ili loess[J]. Journal of Northwest A & F University(Natural Science Edition), 47 (4): 146-154.
    Zhou C, Ai D, Huang W, et al. 2021. Emergency survey and stability analysis of a rainfall-induced soil-Rock mixture landslide at chongqing city, China[J]. Frontiers in Earth Science, 9: 774200. doi: 10.3389/feart.2021.774200
    Zhou C, Huang C, Chen Y D, et al. 2023. Development of a novel resilient anchor cable and its large shear deformation performance[J]. International Journal of Rock Mechanics and Mining Sciences, 163: 1-11.
    Zhou C, Huang W, Ai D, et al. 2022a. Catastrophic landslide triggered by extreme rainfall in Chongqing, China: July 13, 2020, Ni-uerwan landslide[J]. Landslides, 19: 2397-2407. doi: 10.1007/s10346-022-01911-w
    Zhou C, Ma W C, Sui W H. 2022b. Transparent soil model test of a landslide with umbrella-shaped anchors and different slope angles in response to rapid drawdown[J]. Engineering Geology, 307(4): 106765.
    Zhou F X, Zhou Z X, Shao S J. 2021. Wetting deformation properties of unsaturated collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 43 (S1): 36-40.
    Zhou Z, Ma W, Zhang S, et al. 2020. Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess[J]. Engineering Geology, 265: 105449. doi: 10.1016/j.enggeo.2019.105449
    Zhu Y R, Qiu H J, Yang D D, et al. 2021. Pre-and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China[J]. Landslides, 18: 3475-3484. doi: 10.1007/s10346-021-01714-5
    Zhuang M G, Wei Y J, Shao H, et al. 2018. Type and characteristics of loess landslides in Piliqing River, in Yili of Xinjiang Uygur Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 29 (1): 54-59.
    曹小红, 孟和, 尚彦军, 等. 2020. 伊犁谷地黄土滑坡发育分布规律及成因[J]. 新疆地质, 38 (3): 405-411. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202003023.htm
    黄维, 孙畅, 项伟, 等. 2020. 融雪条件下新疆伊犁谷地黄土-卵砾石接触面残余强度[J]. 地质科技通报, 39 (6): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006012.htm
    黄维. 2020. 地震与融雪作用下新疆伊犁谷地黄土滑坡形成机理研究[D]. 武汉: 中国地质大学.
    李传想, 宋友桂, 王东民. 2012. 伊犁盆地黄土分布、年代及粉尘来源分析[J]. 地球与环境, 40 (3): 314-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201203004.htm
    梁世川, 乔华, 吕东, 等. 2023. 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理, 46 (6): 880-888. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202306003.htm
    刘保健, 谢永利, 于友成. 2004. 黄土非饱和入渗规律原位试验研究[J]. 岩石力学与工程学报, 23 (24): 4156-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20042400B.htm
    刘广润, 晏鄂川, 练操. 2002. 论滑坡分类[J]. 工程地质学报, 10 (4): 339-342. http://www.gcdz.org/article/id/9364
    刘金禹, 邢义川, 张爱军2011. 黄土增湿湿陷的非线性本构方程研究[J]. 西北农林科技大学学报(自然科学版), 39 (1): 210-214, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201101033.htm
    刘丽楠, 李守定, 姜越, 等. 2017. 新疆伊犁加朗普特黄土滑坡泥石流降雨诱发机理[J]. 工程地质学报, 25 (5): 1230-1237. doi: 10.13544/j.cnki.jeg.2017.05.007
    刘林, 李金峰, 王小平. 2015. 黄土高原沟壑丘陵区沟道侵蚀与洞穴侵蚀特征[J]. 水土保持通报, 35 (1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201501005.htm
    刘毅. 2015. 伊犁黄土滑坡特征、成因及稳定性分析[D]. 石河子: 石河子大学.
    孟振江, 张凡, 彭建兵, 等. 2022. 预设节理条件下降雨型黄土滑坡模型试验研究[J]. 工程地质学报, 30 (5): 1528-1537. doi: 10.13544/j.cnki.jeg.2022-0434
    牛丽思, 张爱军, 王毓国, 等. 2021. 湿度和密度变化下伊犁黄土的压缩和湿陷特性[J]. 水力发电学报, 40 (2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202102017.htm
    牛丽思, 张爱军, 王毓国, 等. 2020a. NaCl含量对伊犁原状黄土湿陷和溶陷特性的影响[J]. 岩土工程学报, 42 (S2): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2012.htm
    牛丽思, 张爱军, 赵佳敏, 等. 2020b. 易溶盐含量对伊犁原状黄土力学特性的影响规律[J]. 岩土工程学报, 42 (9): 1705-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009021.htm
    彭建兵, 林鸿州, 王启耀, 等. 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22 (4): 684-691. doi: 10.13544/j.cnki.jeg.2014.04.014
    尚彦军, 金维浚, 伊学涛, 等. 2022. 新源县加朗普特特大型滑坡地质结构探测及老滑坡影响综合研究[J]. 工程地质学报, 30 (3): 760-771. doi: 10.13544/j.cnki.jeg.2021-0430
    王升, 曾鹏, 李天斌, 等. 2022. 土质滑坡失稳、运动及冲击压力物质点法模拟研究[J]. 工程地质学报, 30 (4): 1362-1370. doi: 10.13544/j.cnki.jeg.2020-155
    魏学利. 2017. 新疆S316公路沿线黄土滑坡成因机制及防治对策[J]. 公路, 62 (9): 103-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201709028.htm
    吴玮江, 王念秦. 2002. 黄土滑坡的基本类型与活动特征[J]. 中国地质灾害与防治学报, 13 (2): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200202007.htm
    谢婉丽, 王延寿, 马中豪, 等. 2015. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质, 29 (2): 397-407. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201502026.htm
    许强, 陈婉琳, 蒲川豪, 等. 2022. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践[J]. 工程地质学报, 30 (4): 1179-1192. doi: 10.13544/j.cnki.jeg.2021-0676
    叶万军, 强艳红, 景宏君, 等. 2022. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 30 (1): 144-153. doi: 10.13544/j.cnki.jeg.2020-466
    叶玮, 董光荣, 袁玉江, 等. 2000. 新疆伊犁地区末次冰期气候的不稳定性[J]. 科学通报, 45 (6): 641-646. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200006017.htm
    于庆博, 王清, 李兴华. 2022. 土结构性的动态特征与概念表达[J]. 工程地质学报, 30 (6): 1914-1928. doi: 10.13544/j.cnki.jeg.2022-0761
    曾蒙秀, 宋友桂. 2013. 新疆伊犁昭苏黄土剖面中的矿物组成及其风化意义[J]. 地质论评, 59 (3): 575-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201303020.htm
    曾兴, 苏佳, 刘希, 等. 2022. 高庙子膨润土的吸湿性及结合水变化规律研究[J]. 工程地质学报, 30 (5): 1403-1413. doi: 10.13544/j.cnki.jeg.2022-0358
    张爱军, 邢义川, 胡新丽, 等. 2016. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 38 (S2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2019.htm
    张宏, 张其胜. 2019. 不同湿度条件下伊犁黄土湿陷性与压缩量的关系[J]. 水电能源科学, 37 (10): 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201910027.htm
    张婉, 张爱军, 陈佳玫, 等. 2017. 含水率和密度对伊犁黄土湿陷系数的影响[J]. 西北农林科技大学学报(自然科学版), 45 (5): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201705029.htm
    张伟伟, 李彦荣, 宫杨清, 等. 2022. 初始风积黄土结构演化的环境温度效应[J]. 工程地质学报, 30 (2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285
    赵庆玉, 张爱军, 王毓国, 等. 2019. 易溶盐含量对原状非饱和伊犁黄土强度的影响[J]. 西北农林科技大学学报(自然科学版), 47 (4): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201904018.htm
    周凤玺, 周志雄, 邵生俊. 2021. 非饱和黄土的增湿湿陷变形特性分析[J]. 岩土工程学报, 43 (S1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1009.htm
    庄茂国, 魏云杰, 邵海, 等. 2018新疆伊犁皮里青河黄土滑坡类型及其发育特征[J]. 中国地质灾害与防治学报, 29 (1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201801009.htm
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  59
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-07-18
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回