MECHANICAL PROPERTIES AND DISASTER-CAUSING MECHANISM OF LOESS IN ILI, XINJIANG, CHINA
-
摘要: 伊犁黄土具有强湿陷性、高易溶盐含量等地域性特征,成为伊犁谷地地质灾害发育的重要物质基础。本文在总结伊犁谷地黄土的成因、分布、成分及黄土地质灾害分布特征的基础上,分析了含水率、干密度、垂直荷载、易溶盐含量、基质吸力及冻融循环次数对伊犁黄土水-力学特性的影响,总结了伊犁黄土滑坡灾害类型及特性。受谷地喇叭状地形及气候影响,伊犁黄土埋深呈中部深两侧浅分布,粒径由西向东逐渐变细,与黄土滑坡灾害分布呈正相关。伊犁黄土湿陷性受控于垂直荷载,在含水率为8% ~10%达到最大,与干密度呈负相关。伊犁黄土湿陷性与垂直荷载关系符合Biphasic Hill方程。易溶盐含量对伊犁黄土抗剪强度具有重要影响,与黏聚力呈负相关;冻融循环次数增大会导致黄土结构破坏、裂隙率快速增大,伊犁黄土渗透系数先增后减,黏聚力快速减少。从地质结构、动力条件、滑动机制等方面将伊犁黄土滑坡进行分类总结;分别对不同动力成因下的黄土滑坡灾变机理进行阐述。研究成果对伊犁黄土滑坡研究和防治、滑坡灾害预测具有一定的指导意义和适用价值。Abstract: Ili loess has regional characteristics such as strong collapsibility and high soluble salt content and has become an important basis for the development of geological disasters in the Ili Valley. Failure mechanism of loess landslides is controlled by the geological properties of the loess and the special environment of the Ili Valley. Ili loess has its own uniqueness due to its unique geographical location and climatic conditions. In this paper, the distribution, genesis and development characteristics of Ili loess are summarized. The effects of moisture content, dry density, vertical load, soluble salt content, matrix suction and freeze-thaw cycles on the hydro-mechanical characteristics of Ili loess are analyzed in detail with indoor experiment, CT scanning technology, SEM and other methods. The Ili loess landslide was classified and summarized from theaspects of geological structure, dynamic conditions and sliding mechanism. The catastrophic mechanism of loess landslide under different dynamic causes was elaborated. It has certain guiding significance and applicable value for the research and prevention of Ili loess landslide and landslide disaster earch and prevention of Ili loess landslide disasters.
-
Key words:
- Loess /
- Loess landslide /
- Ili Valley /
- Disaster mechanism
-
图 16 冻融循环下黄土裂隙率、孔隙分形维数及不同冻融次数下CT扫描图:(a)0次,(b)1次,(c)5次,(d)10次(Shi G M et al., 2022)
Figure 16. Correlations of both crack ratio and fractal dimension with freeze-thaw and salt content
图 17 冻融循环作用下黄土微观结构演化过程示意图(Liu et al., 2021)
Figure 17. Schematic diagram of the microstructural evolution of loess with FT cycling
表 1 伊犁黄土滑坡分类
Table 1. Classification of Ili loess landslides
滑坡类型 动力成因 滑坡带位置 滑动机制 地质结构 典型案例 黄土层内滑坡 液化型 浅表层 降雨、融雪使土体含水率快速增大,黄土的水敏性及震液性导致浅层发生液化滑移 冻融型 浅层黄土内滑移 季节性冻融导致浅层黄土结构破坏,形成易滑区 皮里青河“3·24”黄土滑坡、大洪纳海沟滑坡 冻融+降雨型 黄土内部多层滑动面滑移 冻融导致后缘裂隙产生,降雨使得地表水灌入 则克台滑坡 黄土-离石黄土滑坡 汇水型 黄土与隔水层界面 双层异质斜坡结构为地下水在界面处汇集形成条件,形成软弱面 加朗普特滑坡群 黄土-砂砾石-泥岩结构滑坡 种蜂场滑坡、苏阿苏沟东岸黄土滑坡 黄土-基岩接触面滑坡 大洪纳海沟滑坡 黄土-泥岩混合型滑坡 降雨型 基岩层间软弱结构面 在自重作用下滑坡体沿着软弱结构面发生蠕滑 乌托巴依萨依滑坡 -
Andersland O B,Ladanyi B. 2003. Frozen ground engineering[M]. New York:John Wiley & Sons. Cao X H, Meng H, Shang Y J, et al. 2020. The development and distribution of loess landslides in Yili Valley and its caused[J]. Xinjiang Geology, 38 (3): 405-411. Chou Y L, Wang L J. 2021. Soil-water characteristic curve and permeability coefficient prediction model for unsaturated loess considering freeze-thaw and dry-wet[J]. Soils and Rocks, 44 (1): 1-11. Guo Z K, Zhang Z Z, Mu Y X, et al. 2022. Effect of freeze-thaw on mechanical properties of loess with different moisture content in Yili, Xinjiang[J]. Sustainability, 14(18): 11357. doi: 10.3390/su141811357 Huang W, Sun C, Xiang W, et al. 2020. Residual strength of loess-gravel interface under snowmelt in Ili valley, Xinjiang[J]. Geological Science and Technology Bulletin, 39 (6): 112-120. Huang W. 2020. Study on the mechanism of the loess landslides under the action of the earthquake and snowmelt in the Ili Valley[D]. Wuhan: China University of Geosciences. Jing J J, Wu Z J, Yan W J, et al. 2022. Experimental study on progressive deformation and failure mode of loess fill slopes under freeze-thaw cycles and earthquakes[J]. Engineering Geology, 310: 106896. doi: 10.1016/j.enggeo.2022.106896 Kawamura S, Miura S. 2013. Rainfall-induced failures of volcanic slope subjected to freezing and thawing[J]. Soils Found, 53 (3): 443-461. doi: 10.1016/j.sandf.2013.04.006 Leng Y Q, Peng J B, Wang Q Y, et al. 2018. A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland[J]. Engineering Geology, 236: 129-136. doi: 10.1016/j.enggeo.2017.05.006 Li B P, Chen J R, Yang F, et al. 2018. Water migration and its impact on mechanical properties of remolded loess under freeze-thaw cycling conditions[J]. Science, Technology and Engineering, 18 (34): 226-230. Li C X, Song Y G, Wang L M. 2012. Distribution, age and dust sources of loess in the Ili Basin[J]. Earth and Environment, 40 (3): 314-320. Li G Y, Wang F, Ma W, et al. 2018. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology, 151: 159-167. doi: 10.1016/j.coldregions.2018.03.021 Li Z Y, Yang G S, Liu H. 2020. The influence of regional freeze-thaw cycles on loess landslides: Analysis of strength deterioration of loess with changes in pore structure[J]. Water, 12(11): 3047. doi: 10.3390/w12113047 Liang S C, Qiao H, Lü D, et al. 2023. Distribution characteristics and main controlling factors of geohazards in Ili Valley[J]. Arid Land Geography, 46 (6): 880-888. Liu B J, Xie Y L, Yu Y C, et al. 2004. In-situ testing study on infiltration in unsaturated loess[J]. Journal of Rock Mechanics and Engineering, 23 (24): 4156-4160. Liu C J, Li Q, ChenY B, et al. 2019. Experimental analysis on the thawing characteristics of chlorite saline soil under pressure freeze-thaw cycles[J]. Science, Technology and Engineering, 19 (10): 163-167. Liu G R, Yan E C, Lian C. 2002. Discussion on classification of landslides[J]. Journal of Engineering Geology, 10 (4): 339-342. Liu J Y, Xing Y C, Zhang A J. 2011. Study of non-linear constitutional equation for humidifying collapse loess[J]. Journal of Northwest A & F University(Natural Science Edition), 39 (1): 210-214, 221. Liu K, Ye W J, Jing H J. 2021. Shear strength and microstructure of intact loess subjected to freeze-thaw cycling[J]. Advances in Materials Science and Engineering, (3): 1-15. Liu L N, Li S D, Jiang Y, et al. 2017. Failure mechanism of loess landslides due to saturated-unsaturated seepage-case study of Gallente landslide in Yili, Xijiang[J]. Journal of Engineering Geology, 25 (5): 1230-1237. Liu L, Li J F, Wang X P. 2015. Features on gully erosion and tunnel erosion in loess hilly and gully region[J]. Bulletin of Soil and Water Conservation, 35 (1): 14-19. Liu S L, Wang L Q, Zhang W G, et al. 2023. A comprehensive review of machine learning-based methods in landslide susceptibility mapping[J]. Geological Journal, 58 (6): 2283-2301. doi: 10.1002/gj.4666 Liu Y, Zhao L J, Bao A M, et al. 2022. Chinese high resolution satellite data and GIS-Based assessment of landslide susceptibility along highway G30 in Guozigou Valley using logistic regression and maxent model[J]. Remote Sensing, 14(5): 3620. Liu Y. 2015. Analysis of geological features, cause and stability of the loess landslide[D]. Shihezi: Shihezi University. Lu J, Wang T H, Cheng, W C, et al. 2019. Permeability anisotropy of loess under influence of dry density and freeze-thaw cycles[J]. International Journal of Geomechanics, 19(9): 04019103. doi: 10.1061/(ASCE)GM.1943-5622.0001485 Lü Q L, Zhang Z Z, Zhang T D, et al. 2021. The trend of permeability of loess in Yili, China, under freeze-thaw cycles and its microscopic mechanism[J]. Water, 13(22): 3257. doi: 10.3390/w13223257 Machalett B, Frechen M, Hambach U, et al. 2006. The loess sequence from Remisowka(northern boundary of the Tien Shan Mountains, Kazakhstan)-Part Ⅰ: Luminescence dating[J]. Quaternary International, 152-153: 192-201. Meng Z J, Zhang F, Peng J B, et al. 2022. Model test research on rainfall-type loess landslide under preset joint conditions[J]. Journal of Engineering Geology, 30 (5): 1528-1537. Niu S L, Zhang A J, Wang Y G, et al. 2021. Characteristics of compressibility and collapsibility of Ili loess under varying water content and dry density[J]. Journal of Hydroelectric Engineering, 40 (2): 167-176. Niu S L, Zhang A J, Wang Y G, et al. 2020a. Effects of NaCl content on water collapsibility and salt collapsibility of undisturbed Ili loess[J]. Chinese Journal of Geotechnical Engineering, 42 (S2): 67-71. Niu S L, Zhang A J, Zhao J M, et al. 2020b. Influence of soluble salt content on mechanical properties of Ili undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 42 (9): 1705-1714. Peng J B, Lin H C, Wang Q Y, et al. 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22 (4): 684-691. Peng J B, Sun P, Igwe O, et al. 2018. Loess caves, a special kind of geohazard on loess plateau, northwestern China[J]. Engineering Geology, 236: 79-88. doi: 10.1016/j.enggeo.2017.08.012 Peng J B, Wang S K, Wang Q Y, et al. 2019. Distribution and genetic types of loess landslides in China[J]. Engineering Geology, 170: 329-350. Qi J L, Guo F, Hui J. 2010. Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions[J]. Cold Regions Science and Technology, 64 (3): 262-270. doi: 10.1016/j.coldregions.2010.04.010 Shang Y J, Jin W J, Yi X T, et al. 2022. Geological exploration on unique geostructure of super large Zeketai Landslide in Xinyuan County and back analysis on influence of old landslide[J]. Journal of Engineering Geology, 30 (3): 760-771. Shi G M, Li X Y, Guo Z K, et al. 2022. Effect of mica content on shear strength of the Yili loess under the dry-wet cycling condition[J]. Sustainability, 14(15): 9569. doi: 10.3390/su14159569 Shi Y J, Zhang L H, Ma W, et al. 2022. Investigating unfrozen water and its components during freeze-thaw action in loess using a novel NMR technique[J]. European Journal of Soil Science, 73(4): E13262. doi: 10.1111/ejss.13262 Su Y, Li P, Ren Z, et al. 2020. Freeze-thaw effects on erosion process in loess slope under simulated rainfall[J]. Journal of Arid Land, 12 (6): 937-949. doi: 10.1007/s40333-020-0106-6 Subramanian S S, Ishikawa T, Tokoro T. 2017. Stability assessment approach for soil slopes in seasonal cold regions[J]. Engineering Geology, 221: 154-169. doi: 10.1016/j.enggeo.2017.03.008 Wang H Y, Dong S, Li J, et al. 2020. The effect of different compaction conditions on the shear strength of loess[J]. Science and Technology Bulletin, 36 (11): 69-73, 78. Wang J J, Liang Y, Zhang H P, et al. 2014. A loess landslide induced by excavation and rainfall[J]. Landslides, 11: 141-152. doi: 10.1007/s10346-013-0418-0 Wang S, Zeng P, Li T B, et al. 2022. Initiation, movement and impact simulation of soil landslide with material point method[J]. Journal of Engineering Geology, 30 (4): 1362-1370. Wang T X, Yang T, Lu J. 2016. Anisotropic effects of dry density and freeze-thaw cycles on the permeability of loess[J]. Soil Mechanics, 37 (S1): 72-78. Wei X L. 2017. Formation mechanism and prevention countermeasure for loess landslides along Highway 316 in Xinjiang[J]. Highway, 62 (9): 103-113. Wu W J, Wang N Q. 2002. Basic types and active features of loess landslide[J]. The Chinese Journal of Geological Hazard and Control, 13 (2): 36-40. Xian Y, Wei X L, Zhou H B, et al. 2022. Snowmelt-triggered reactivation of a loess landslide in Yili, Xinjiang, China: mode and mechanism[J]. Landslides, 19 (8): 1843-1860. doi: 10.1007/s10346-022-01879-7 Xie B L, Zhang W Y, Sun X L, et al. 2022. Experimental study on the effects of freeze-thaw cycles on strength and microstructure of Xining region loess in China[J]. Buildings, 12(6): 795. doi: 10.3390/buildings12060795 Xie W L, Wang Y S, Ma Z H, et al. 2015. Besearch status and prospect of loess collapsibilitymechanism[J]. Geoscience, 29 (2): 397-407. Xiong L Y, Tang G A, Yuan B Y, et al. 2014. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models[J]. Science China Earth Sciences, 57 (8): 1944-1952. doi: 10.1007/s11430-014-4833-4 Xu J, Gao J Y, Li Y F, et al. 2019. Experimental study on the uplift bearing capacity model of excavated foundation in coarse-grained saline soil[J]. Journal of Geotechnical Engineering, 41 (11): 2079-2085. Xu J, Li Y F, Lan W, et al. 2019. Shear strength and damage mechanism of saline intact loess after freeze-thaw cycling[J]. Cold Regions Science and Technology, 164: 102779. doi: 10.1016/j.coldregions.2019.05.005 Xu J, Li Y F, Ren C, et al. 2021. Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess[J]. Cold Regions Science and Technology, 181: 103183. doi: 10.1016/j.coldregions.2020.103183 Xu J, Ren C, Gao J Y, et al. 2021. Permeability characteristics and microscopic mechanism of Na2SO4 saline undisturbed loess under dry wet cycling effect[J]. Journal of Central South University(Natural Science Edition), 52 (5): 1644-1654. Xu J, Ren J, Wang Z, et al. 2018. Strength behaviors and meso-structural characters of loess after freeze-thaw[J]. Cold Regions Science and Technology, 148: 104-120. doi: 10.1016/j.coldregions.2018.01.011 Xu J, Wang Z Q, Ren J W, et al. 2018. Comparative experimental study on the mechanism of freeze-thaw degradation of undisturbed and remolded loess[J]. Journal of Underground Space and Engineering, 14 (3): 643-649. Xu Q, Chen W L, Pu C H, et al. 2022. Theoretical and practical approach based on nature-based solutions in disasters control of major engineering in loess plateau[J]. Journal of Engineering Geology, 30 (4): 1179-1192. Yang H, Li G, Huang X, et al. 2020. Loess depositional dynamics and paleoclimatic changes in the Yili Basin, Central Asia, over the past 250ka[J]. Catena, 195: 104881. doi: 10.1016/j.catena.2020.104881 Ye W J, Qiang Y H, Jing H J, et al. 2022. Freeze-thaw cycle experiment of loess paleosol with different water content based on nuclear magnetic resonance[J]. Journal of Engineering Geology, 30 (1): 144-153. Ye W, Dong G R, Yuan Y J, et al. 2000. Climatic instability of the Last Glacial Period in yili, xinjiang[J]. Scientific Bulletin, 45 (6): 641-646. Yin Y P, Wang L Q, Zhang W G, et al. 2022. Research on the collapse process of a thick-layer dangerous rock on the reservoir bank[J]. Bulletin of Engineering Geology and the Environment, doi: 10.1007/s10064-022-02618-x. Yu Q B, Wang Q, Li X H. 2022. Dynamic characteristics and concept expression of soil structure[J]. Journal of Engineering Geology, 30 (6): 1914-1928. Zeng M X, Song Y G. 2013. Mineral composition and their weathering significance of Zhaosu loess-Paleosol sequence in the Ili Basin, Xinjiang[J]. Geological Review, 59 (3): 575-586. Zeng X, Su J, Liu X, et al. 2022. Experimental study on hydroscopicity and bound water of Gaomiaozi bentonite[J]. Journal of Engineering Geology, 30 (5): 1403-1413. Zhang A J, Xing Y C, Hu X L, et al. 2016. Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 38 (S2): 117-122. Zhang F Y, Wang G H, Kamal T, et al. 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution[J]. Engineering Geology, 155: 69-79. doi: 10.1016/j.enggeo.2012.12.018 Zhang H, Zhang Q S. 2019. Relationship between humidification and compression of Yili loess under different humidity conditions[J]. Water Resources and Power, 37 (10): 105-107. Zhang H, Zhi B, Liu E, et al. 2020. Study on varying characteristics of temperature field and moisture field of shallow loess in the freeze-thaw period[J]. Advances in Materials Science and Engineering, 1-10. Zhang W W, Li Y R, Gong Y Q, et al. 2022. Effects of temperature fluctuation on structural evolution of initial loess deposits[J]. Journal of Engineering Geology, 30 (2): 357-365. Zhang W, Zhang A J, Chen J M, et al. 2017. Effect of moisture content and density on collapsibility coefficient of Ili loess[J]. Journal of Northwest A & F University(Natural Science Edition), 45 (5): 211-220. Zhao Q Y, Zhang A J, Wang Y G, et al. 2019. Effect of soluble salt content on the strength of original unsaturated Ili loess[J]. Journal of Northwest A & F University(Natural Science Edition), 47 (4): 146-154. Zhou C, Ai D, Huang W, et al. 2021. Emergency survey and stability analysis of a rainfall-induced soil-Rock mixture landslide at chongqing city, China[J]. Frontiers in Earth Science, 9: 774200. doi: 10.3389/feart.2021.774200 Zhou C, Huang C, Chen Y D, et al. 2023. Development of a novel resilient anchor cable and its large shear deformation performance[J]. International Journal of Rock Mechanics and Mining Sciences, 163: 1-11. Zhou C, Huang W, Ai D, et al. 2022a. Catastrophic landslide triggered by extreme rainfall in Chongqing, China: July 13, 2020, Ni-uerwan landslide[J]. Landslides, 19: 2397-2407. doi: 10.1007/s10346-022-01911-w Zhou C, Ma W C, Sui W H. 2022b. Transparent soil model test of a landslide with umbrella-shaped anchors and different slope angles in response to rapid drawdown[J]. Engineering Geology, 307(4): 106765. Zhou F X, Zhou Z X, Shao S J. 2021. Wetting deformation properties of unsaturated collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 43 (S1): 36-40. Zhou Z, Ma W, Zhang S, et al. 2020. Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess[J]. Engineering Geology, 265: 105449. doi: 10.1016/j.enggeo.2019.105449 Zhu Y R, Qiu H J, Yang D D, et al. 2021. Pre-and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China[J]. Landslides, 18: 3475-3484. doi: 10.1007/s10346-021-01714-5 Zhuang M G, Wei Y J, Shao H, et al. 2018. Type and characteristics of loess landslides in Piliqing River, in Yili of Xinjiang Uygur Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 29 (1): 54-59. 曹小红, 孟和, 尚彦军, 等. 2020. 伊犁谷地黄土滑坡发育分布规律及成因[J]. 新疆地质, 38 (3): 405-411. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202003023.htm 黄维, 孙畅, 项伟, 等. 2020. 融雪条件下新疆伊犁谷地黄土-卵砾石接触面残余强度[J]. 地质科技通报, 39 (6): 112-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202006012.htm 黄维. 2020. 地震与融雪作用下新疆伊犁谷地黄土滑坡形成机理研究[D]. 武汉: 中国地质大学. 李传想, 宋友桂, 王东民. 2012. 伊犁盆地黄土分布、年代及粉尘来源分析[J]. 地球与环境, 40 (3): 314-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201203004.htm 梁世川, 乔华, 吕东, 等. 2023. 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理, 46 (6): 880-888. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202306003.htm 刘保健, 谢永利, 于友成. 2004. 黄土非饱和入渗规律原位试验研究[J]. 岩石力学与工程学报, 23 (24): 4156-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX20042400B.htm 刘广润, 晏鄂川, 练操. 2002. 论滑坡分类[J]. 工程地质学报, 10 (4): 339-342. http://www.gcdz.org/article/id/9364 刘金禹, 邢义川, 张爱军2011. 黄土增湿湿陷的非线性本构方程研究[J]. 西北农林科技大学学报(自然科学版), 39 (1): 210-214, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201101033.htm 刘丽楠, 李守定, 姜越, 等. 2017. 新疆伊犁加朗普特黄土滑坡泥石流降雨诱发机理[J]. 工程地质学报, 25 (5): 1230-1237. doi: 10.13544/j.cnki.jeg.2017.05.007 刘林, 李金峰, 王小平. 2015. 黄土高原沟壑丘陵区沟道侵蚀与洞穴侵蚀特征[J]. 水土保持通报, 35 (1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201501005.htm 刘毅. 2015. 伊犁黄土滑坡特征、成因及稳定性分析[D]. 石河子: 石河子大学. 孟振江, 张凡, 彭建兵, 等. 2022. 预设节理条件下降雨型黄土滑坡模型试验研究[J]. 工程地质学报, 30 (5): 1528-1537. doi: 10.13544/j.cnki.jeg.2022-0434 牛丽思, 张爱军, 王毓国, 等. 2021. 湿度和密度变化下伊犁黄土的压缩和湿陷特性[J]. 水力发电学报, 40 (2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202102017.htm 牛丽思, 张爱军, 王毓国, 等. 2020a. NaCl含量对伊犁原状黄土湿陷和溶陷特性的影响[J]. 岩土工程学报, 42 (S2): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2012.htm 牛丽思, 张爱军, 赵佳敏, 等. 2020b. 易溶盐含量对伊犁原状黄土力学特性的影响规律[J]. 岩土工程学报, 42 (9): 1705-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009021.htm 彭建兵, 林鸿州, 王启耀, 等. 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22 (4): 684-691. doi: 10.13544/j.cnki.jeg.2014.04.014 尚彦军, 金维浚, 伊学涛, 等. 2022. 新源县加朗普特特大型滑坡地质结构探测及老滑坡影响综合研究[J]. 工程地质学报, 30 (3): 760-771. doi: 10.13544/j.cnki.jeg.2021-0430 王升, 曾鹏, 李天斌, 等. 2022. 土质滑坡失稳、运动及冲击压力物质点法模拟研究[J]. 工程地质学报, 30 (4): 1362-1370. doi: 10.13544/j.cnki.jeg.2020-155 魏学利. 2017. 新疆S316公路沿线黄土滑坡成因机制及防治对策[J]. 公路, 62 (9): 103-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201709028.htm 吴玮江, 王念秦. 2002. 黄土滑坡的基本类型与活动特征[J]. 中国地质灾害与防治学报, 13 (2): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200202007.htm 谢婉丽, 王延寿, 马中豪, 等. 2015. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质, 29 (2): 397-407. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201502026.htm 许强, 陈婉琳, 蒲川豪, 等. 2022. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践[J]. 工程地质学报, 30 (4): 1179-1192. doi: 10.13544/j.cnki.jeg.2021-0676 叶万军, 强艳红, 景宏君, 等. 2022. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 30 (1): 144-153. doi: 10.13544/j.cnki.jeg.2020-466 叶玮, 董光荣, 袁玉江, 等. 2000. 新疆伊犁地区末次冰期气候的不稳定性[J]. 科学通报, 45 (6): 641-646. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200006017.htm 于庆博, 王清, 李兴华. 2022. 土结构性的动态特征与概念表达[J]. 工程地质学报, 30 (6): 1914-1928. doi: 10.13544/j.cnki.jeg.2022-0761 曾蒙秀, 宋友桂. 2013. 新疆伊犁昭苏黄土剖面中的矿物组成及其风化意义[J]. 地质论评, 59 (3): 575-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201303020.htm 曾兴, 苏佳, 刘希, 等. 2022. 高庙子膨润土的吸湿性及结合水变化规律研究[J]. 工程地质学报, 30 (5): 1403-1413. doi: 10.13544/j.cnki.jeg.2022-0358 张爱军, 邢义川, 胡新丽, 等. 2016. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 38 (S2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2019.htm 张宏, 张其胜. 2019. 不同湿度条件下伊犁黄土湿陷性与压缩量的关系[J]. 水电能源科学, 37 (10): 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201910027.htm 张婉, 张爱军, 陈佳玫, 等. 2017. 含水率和密度对伊犁黄土湿陷系数的影响[J]. 西北农林科技大学学报(自然科学版), 45 (5): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201705029.htm 张伟伟, 李彦荣, 宫杨清, 等. 2022. 初始风积黄土结构演化的环境温度效应[J]. 工程地质学报, 30 (2): 357-365. doi: 10.13544/j.cnki.jeg.2021-0285 赵庆玉, 张爱军, 王毓国, 等. 2019. 易溶盐含量对原状非饱和伊犁黄土强度的影响[J]. 西北农林科技大学学报(自然科学版), 47 (4): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201904018.htm 周凤玺, 周志雄, 邵生俊. 2021. 非饱和黄土的增湿湿陷变形特性分析[J]. 岩土工程学报, 43 (S1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1009.htm 庄茂国, 魏云杰, 邵海, 等. 2018新疆伊犁皮里青河黄土滑坡类型及其发育特征[J]. 中国地质灾害与防治学报, 29 (1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201801009.htm -