南天山苏力间沟山地冻土地质成因及融沉特性研究

宋殿君 赵文 文洪 高旭

宋殿君, 赵文, 文洪, 等. 2023. 南天山苏力间沟山地冻土地质成因及融沉特性研究[J]. 工程地质学报, 31(4): 1225-1234. doi: 10.13544/j.cnki.jeg.2023-0184
引用本文: 宋殿君, 赵文, 文洪, 等. 2023. 南天山苏力间沟山地冻土地质成因及融沉特性研究[J]. 工程地质学报, 31(4): 1225-1234. doi: 10.13544/j.cnki.jeg.2023-0184
Song Dianjun, Zhao Wen, Wen Hong, et al. 2023. Geological formation and thaw-settlement characteristics of frozen soil in Sulijian Gully,southern Tianshan Mountains[J]. Journal of Engineering Geology, 31(4): 1225-1234. doi: 10.13544/j.cnki.jeg.2023-0184
Citation: Song Dianjun, Zhao Wen, Wen Hong, et al. 2023. Geological formation and thaw-settlement characteristics of frozen soil in Sulijian Gully,southern Tianshan Mountains[J]. Journal of Engineering Geology, 31(4): 1225-1234. doi: 10.13544/j.cnki.jeg.2023-0184

南天山苏力间沟山地冻土地质成因及融沉特性研究

doi: 10.13544/j.cnki.jeg.2023-0184
基金项目: 

中铁一院横向课题 2021-0122

西华大学人才引进项目 Z231013

详细信息
    作者简介:

    宋殿君(1989-),男,工程师,主要从事高寒山区铁路地质选线相关工作. E-mail:543878680@qq.com

    通讯作者:

    文洪(1986-),男,博士,讲师,主要从事地质灾害及其防治工程研究. E-mail:geowenhong@mail.xhu.edu.cn

  • 中图分类号: P642.13

GEOLOGICAL FORMATION AND THAW-SETTLEMENT CHARACTERISTICS OF FROZEN SOIL IN SULIJIAN GULLY, SOUTHERN TIANSHAN MOUNTAINS

Funds: 

the Transverse Project of China Railway First Survey and Design Institute Group Co., Ltd. 2021-0122

Talent Introduction Project of Xihua University Z231013

  • 摘要: 气候变暖为冻土区域的工程建设带来更多不确定性,查明冻土的地质成因及其融沉特性对于工程选址以及工法选择等尤为重要。本文以南天山地区的苏力间沟内分布的山地冻土为研究对象,通过钻探、高密度电法、地温监测以及室内试验等,查明该区域冻土的空间分布,剖析冻土形成条件和形成机理模式,揭示其融沉特性及影响因素。结果表明:苏力间沟内多年冻土和季节性冻土均有分布,季节性冻土和不连续多年冻土主要分布在左岸,即阳坡坡麓;连续多年冻土主要分布在苏力间河右岸,即阴坡坡麓;冻土层分布深度和厚度不均匀,多分布在1.9~2.7 m厚的表土下,厚约1.5~10 m;在冻土地质成因模式上分为阴坡富水低温成因模式和阳坡坡面汇流成因模式;苏力间沟多年冻土区的融沉系数介于0.39%和91.25%之间,其中连续多年冻土区的融沉系数多值区间在42.5%和68.75%之间,平均值为55.62%;苏力间沟多年冻土融沉系数与总含水率、天然密度、干密度、天然孔隙比和液性指数相关性较高,皮尔森相关系数均达0.8以上。
  • 图  1  研究区地理位置图

    Figure  1.  Location of the study area

    图  2  苏力间沟冻土分布图

    Figure  2.  Distribution map of frozen soil in Sulijian Gully

    图  3  苏力间沟地温变化曲线

    Figure  3.  Ground temperature variation curve in Sulijian Gully

    图  4  苏力间沟谷冬季积雪分布遥感影像

    Figure  4.  Remote sensing image of winter snow cover distribution in Sulijian Gully

    图  5  苏力间沟山区冻土地质成因模式示意图

    Figure  5.  Schematic diagram of geological genetic model of frozen soil in Sulijian Gully

    图  6  取样点位与冻土融化压缩实验装置

    Figure  6.  Location map of frozen soil sampling points and melting compression experimental instrument

    图  7  不同冻土区融沉系数箱线图和散点图

    Figure  7.  Box plot and scatter plot of thawing-settlement coefficients in different frozen soil regions

    表  1  试验指标及方法、仪器等一览表

    Table  1.   List of test indicators and methods, instruments,etc.

    序号 实验项目 试验方法 采用仪器 实验条件
    1 颗粒尺寸 筛析法/密度计法 电热干燥箱(101A-3E)、电子天平(YP300001)、土壤筛0.075~60mm、密度计(TM-85)、量筒1000 mL 室温
    2 总含水率 烘干法 电热干燥箱(101A-3E)、电子天平(ES2200) 负温环境
    3 天然密度 联合测定法/环刀法 排液筒、台秤(EP-22KA)、量筒1000 mL、天平(ES2200) 负温环境
    4 颗粒密度 量瓶法/虹吸筒法 量瓶100 mL、天平(FA 2004)、恒温水槽(HHS-6)、砂浴(DKS300*300)、虹吸筒、量筒2000 mL、台秤(EP-22KA) 室温
    5 液限 液、塑限联合测定法 液塑限联合测定仪(GSY-2型)、天平(ES2200)、电热干燥箱(101A-3E) 室温
    6 塑限 液、塑限联合测定法 液塑限联合测定仪(GSY-2型)、天平(ES2200)、电热干燥箱(101A-3E) 室温
    7 融化下沉系数 室内冻土融化压缩试验 融化压缩仪(SC-15型)、恒温水槽(HHS-6) 负温环境
    干密度、天然孔隙比和饱和度为计算值
    下载: 导出CSV

    表  2  冻土融沉系数与基本物理指标相关性一览表

    Table  2.   Pearson correlation coefficient between thawing-settlement coefficient and basic physical indexes of frozen soil

    取样深度 总含水率 天然密度 干密度 颗粒密度 天然孔隙比 饱和度 液限 塑限 塑性指数 液性指数
    连续多年冻土区融沉系数 0.245** 0.895** -0.845** -0.876** 0.046 0.896** 0.379** 0.359** 0.347** 0.087 0.889**
    不连续多年冻土区融沉系数 -0.041 0.887** -0.865** -0.940** -0.001 0.892** 0.398 0.107 0.158 -0.155 0.893**
    * *相关性在0.01层上显著
    下载: 导出CSV
  • Bi G Q,Mu L J,Wang D. 2018. Frost-heaving and thaw-settling feature of silty clay along Lanzhou subway lines[J]. Journal of Lanzhou University of Technology,44 (2): 113-116.
    Dmitry S, Oleg A, Alexander V. 2021. Snow and ice-related hazards, risks, and disasters[M]. Amsterdam, Netherlands: Elsevier.
    Feng Y Q. 2020. Changes of glaciers and permafrost in Qinghai-Tibet Plateau and their ecological and hydrological effects[D]. Beijing: China University of Geosciences(Beijing).
    Guo D X, Zhou Y W, Qiu G Q. 2001. Geocryological regionalization and classification map of the frozen soil in China(1 ︰ 10000000)(2000)[DS]. National Tibetan Plateau Data Center.
    He P, Cheng G D, Yang C S, et al. 2003. The evaluation of thawing-settlement coefficient of frozen soils[J]. Journal of Glaciology and Geocryology, 25 (6): 608-613.
    Jin H J, Jin X Y, He R X, et al. 2019. Evolution of permafrost in China during the last 20 ka[J]. Science China Earth Sciences, 62 : 1207-1223.
    Jin H J, Wang S L, Lü L Z, et al. 2010. Features and degradation of frozen ground in the sources area of the Yellow River, China[J]. Journal of Glaciology and Geocryology, 32 (1): 10-17.
    Jin H J, Yu Q H, Wang S L, et al. 2008. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J]. Cold Regions Science and Technology, 53 (3): 317-333.
    Li R, Zhao L, Ding Y J, et al. 2012. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 57 (35): 4609-4616.
    Li X L, Wang W. 2020. Experimental investigation on the properties of thawing settlement and influencing factors of silty clay in Changchun area[J]. Science Technology and Engineering, 20 (36): 14854-14861.
    Li X, Cheng G D, Jin H J, et al. 2008. Cryospheric change in China[J]. Global and Planetary Change, 62 (3): 210-218.
    Ling S, Yao X, Wang Z S, et al. 2014. Distribution feature, frozen thrawing damage and engineering prevention measure of high-altitude permafrost[J]. Journal of Engineering Geology, 22 (S1): 476-482.
    Luo X X, Ma Q G, Yu Q H, et al. 2022. Field investigation on moisture, heat and deformation behaviors and their coupling effects of expressway in warm permafrost regions[J]. International Journal of Heat and Mass Transfer, 191: 122858.
    Qi S W, Li Y C, Song S H, et al. 2022. Regionalization of engineering geological stability and distribution of engineering disturbance disasters in Tibetan Plateau[J]. Journal of Engineering Geology, 30 (3): 599-608.
    Qian J, Liu H J, Yu Q H, et al. 2009. Permafrost engineering geological characteristic and discussion of route selection in Qinghai-Tibet Plateau[J]. Journal of Engineering Geology, 17 (4): 508-515.
    Shen Y P, Liu Y, Tai B W, et al. 2021. Experimental study on thawing settlement coefficient and frost heave rate of sandy silt under freeze-thaw cycle[J]. Journal of the China Railway Society, 43 (9): 118-126.
    Wu G Q, Xie Y L, Wei J, et al. 2022. Experimental study and prediction model on frost heave and thawing settlement deformation of subgrade soil in alpine meadow area of Qinghai-Tibet Plateau[J]. Arabian Journal of Geosciences, 15(6): 534.
    Wu Q B, Zhang Z Q, Liu G. 2021. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet Plateau[J]. Journal of Engineering Geology, 29 (2): 342-352.
    Wu Y L, Liu T X, Deng Q L, et al. 2019. Genetic mechanism of block and detritus permafrost in Daqianshiling tunnel entrance section of Tianshifu-Huanren Railway[J]. Science Technology and Engineering, 19 (27): 107-112.
    Yao X L, Qi J L. 2011. Artificial neural network forecasting method for thaw-settlement coefficient[J]. Journal of Glaciology and Geocryology, 33 (4): 891-896.
    Yu J F, Zhang W Y, Li M H. 2020. Law of deformation of railway subgrade caused by cyclic freezingand thawing in seasonal frozen soil region[J]. Journal of Yangtze River Scientific Research Institute, 37 (5): 133-138.
    Yu Q H, You Y H, Yan H, et al. 2013. Distribution and characteristics of permafrost in Nalati mountain, western Tianshan Mountians in China[J]. Journal of Glaciology and Geocryology, 35 (1): 10-18.
    Zhang F Y, Guo L P, Hao J S, et al. 2019. Analyses on the characteristics of seasonally frozen ground under snow cover and forest/grassland in Kunes Valley, western Tianshan, Xinjiang[J]. Journal of Glaciology and Geocryology, 41 (2): 316-323.
    Zhang Q, Song Z P, Li X L, et al. 2019. Deformation behaviors and meso-structure characteristics variation of the weathered soil of Pisha sandstone caused by freezing-thawing effect[J]. Cold Regions Science and Technology, 167: 102864.
    Zhao W, Wang X J, Xu Z X, et al. 2021. Experimental study on natural evolution characteristics of coarse grained soil slope in seasonal frozen soil region[J]. Journal of Engineering Geology, 29 (5): 1497-1506.
    毕贵权, 穆丽静, 王冬. 2018. 兰州地铁沿线粉质黏土的冻胀融沉特性[J]. 兰州理工大学学报, 44 (2): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201802022.htm
    冯雨晴. 2020. 青藏高原冰川冻土变化及其生态与水文效应研究[D]. 北京: 中国地质大学(北京).
    郭东信, 周幼吾, 邱国庆. 2001. 中国1 ︰ 1000万冻土区划及类型图(2000)[DS]. 国家青藏高原科学数据中心.
    何平, 程国栋, 杨成松, 等. 2003. 冻土融沉系数的评价方法[J]. 冰川冻土, 25 (6): 608-613. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200306002.htm
    金会军, 金晓颖, 何瑞霞, 等. 2019. 两万年来的中国多年冻土形成演化[J]. 中国科学(地球科学), 49 (8): 1197-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201908003.htm
    金会军, 王绍令, 吕兰芝, 等. 2010. 黄河源区冻土特征及退化趋势[J]. 冰川冻土, 32 (1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201001003.htm
    李晓乐, 王伟. 2020. 长春地区粉质黏土融沉性质及影响因素试验研究[J]. 科学技术与工程, 20 (36): 14854-14861. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202036011.htm
    凌盛, 姚鑫, 王宗盛, 等. 2014. 高海拔多年冻土分布特征、冻融破坏以及工程防治措施[J]. 工程地质学报, 22 (S1): 476-482. doi: 10.13544/j.cnki.jeg.2014.s1.080
    祁生文, 李永超, 宋帅华, 等. 2022. 青藏高原工程地质稳定性分区及工程扰动灾害分布浅析[J]. 工程地质学报, 30 (3): 599-608. doi: 10.13544/j.cnki.jeg.2022-0172
    钱进, 刘厚健, 俞祁浩, 等. 2009. 青藏高原冻土工程地质特性与选线原则探讨[J]. 工程地质学报, 17 (4): 508-515. http://www.gcdz.org/article/id/8447
    沈宇鹏, 刘越, 邰博文, 等. 2021. 冻融循环下含砂粉土冻胀率和融沉系数的试验研究[J]. 铁道学报, 43 (9): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202109018.htm
    吴青柏, 张中琼, 刘戈. 2021. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 29 (2): 342-352. doi: 10.13544/j.cnki.jeg.2020-084
    伍运霖, 刘天翔, 邓清禄, 等. 2019. 田桓铁路大前石岭隧道进口块碎石冻土成因机理[J]. 科学技术与工程, 19 (27): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201927016.htm
    姚晓亮, 齐吉琳. 2011. 融沉系数的人工神经网络预测方法[J]. 冰川冻土, 33 (4): 891-896. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201104031.htm
    于景飞, 张文月, 李明浩. 2020. 季节性冻土区铁路路基冻融变形规律[J]. 长江科学院院报, 37 (5): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202005026.htm
    俞祁浩, 游艳辉, 阎海, 等. 2013. 中国天山西部那拉提山地区多年冻土分布特征[J]. 冰川冻土, 35 (1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201301003.htm
    张飞云, 郭玲鹏, 郝建盛, 等. 2019. 新疆天山西部巩乃斯河谷积雪与森林/草地覆盖条件下季节冻土特征分析[J]. 冰川冻土, 41 (2): 316-323. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201902007.htm
    赵文, 汪小静, 徐正宣, 等. 2021. 季节性冻土区粗颗粒土边坡自然演化特征试验研究[J]. 工程地质学报, 29 (5): 1497-1506. doi: 10.13544/j.cnki.jeg.2020-174
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  25
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-07-05
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回