EVALUATION OF GEOLOGICAL HAZARD SUSCEPTIBILITY IN EMIN COUNTY, XINJIANG BASED ON DETERMINISTIC COEFFICIENT AND INFORMATION COUPLING MODEL
-
摘要: 地质灾害已经对人类生命财产安全和自然环境造成了巨大的威胁,合理准确的易发性评价研究对于防灾减灾具有重要的现实意义。目前,多种模型耦合的易发评价方法已成为研究热点,但将信息量模型与确定性系数模型(Certainty Factor,CF)耦合进行易发性评价研究却相对较少。本文基于额敏县地质环境背景,结合野外地质调查及评价因子选取原则,在分析各评价因子地质灾害发育分布规律及相关性的基础上,选择高程、坡度、坡向、地面曲率、工程地质岩组、距断层距离、距道路距离、距水系距离、降雨量等9个评价指标,采用CF模型、信息量模型以及CF与信息量耦合模型开展额敏县易发性评价研究。结果表明,耦合模型评价结果的合理性与准确度均优于两种单一模型,CF与信息量耦合模型的AUC值高达0.862;耦合模型将易发区分为:低易发区42.39%,中度易发区28.76%,高易发区23.62%,极高易发区5.23%,其中极高和高易发区主要分布在切割深度大、沟两侧坡度陡峭、基岩裸露、节理裂隙发育、风化严重、降雨量大的区域,灾害点密度分别达到了6.62个/100 km2和5.11个/100 km2。采用耦合模型得到的额敏县易发性评价分析结果可为该地区地质灾害监测预警和防治规划提供技术参考。Abstract: Geological disasters have already caused great threats to human life and property safety and natural environment. Reasonable and accurate evaluation of the vulnerability has important practical significance for disaster prevention and reduction. At present, the certainty factor model coupled with information content model has become a research hotspot. However, relatively few studies are available in evaluating the certainty factor. Based on the geological environment background of Emin County, combined with the field geological survey and the selection principle of evaluation factors, this paper selects 9 evaluation indexes. On the basis of analyzing the distribution and correlation of geological hazards development of each evaluation factor, they include elevation, slope, slope direction, ground curvature, engineering geological rock group, distance from fault, distance from road, distance from water system and rainfall. The certainty factor model, the information model and the coupling model of the cetainty factor and the information are used to evaluate the susceptibility of geo-hazards in Emin County. The results show that the rationality and accuracy of the coupled model are better than those of the two single models. The AUC value of the cetainty factor and information coupled model is as high as 0.862. The coupling model divides the prone areas into: low-prone area 42.39%, moderately prone area 28.76%, high-prone area 23.62%, and extremely high prone area 5.23%, respectively. The extremely high and high-prone areas were mainly distributed in the areas with large cutting depth, steep slope on both sides of the ditch, exposed bedrock, joint development, severe weathering, and heavy rainfall. The density of disaster sites reached 6.62 per 100 km2 and 5.11 per 100 km2, respectively. The results of vulnerability evaluation and analysis in Emin County obtained by coupling model can provide technical reference for geological hazard monitoring, early warning and prevention planning in this area.
-
表 1 高程指标分级与地质灾害分布关系表
Table 1. Table of relation between elevation index classification and geological hazard distribution
因子 VALUE 指标分级/m 灾害点数量/个 灾害点比例/% 分级面积比例/% 高程 1 461~788 25 11.11 32.99 2 788~1149 56 24.89 23.08 3 1149~1576 100 44.44 15.43 4 1576~2001 34 15.11 15.42 5 2001~2852 10 4.44 13.09 表 2 坡度指标分级与地质灾害分布关系表
Table 2. Relationship between slope index classification and geological hazard distribution
因子 VALUE 指标分级/(°) 灾害点数量/个 灾害点比例/% 分级面积比例/% 坡度 1 0~6 70 31.11 58.59 2 6~16 46 20.44 17.55 3 16~26 44 19.56 13.42 4 26~72 65 28.89 10.44 表 3 坡向指标分级与地质灾害分布关系表
Table 3. Grade of slope direction index and distribution of geological hazards
因子 VALUE 指标分级 灾害点数量/个 灾害点比例/% 分级面积比例/% 坡向 1 北(0°~22.5°) 11 4.89 10.82 2 东北(22.5°~67.5°) 12 5.33 7.79 3 东北(67.5°~112.5°) 14 6.22 8.79 4 东南(112.5°~157.5°) 39 17.33 13.97 5 南(157.5°~202.5°) 46 20.45 15.83 6 西南(202.5°~247.5°) 35 15.56 13.30 7 西(247.5°~292.5°) 23 10.22 9.60 8 西北(292.5°~337.5°) 27 12.00 9.68 9 北(337.5°~360°) 18 8.00 10.22 表 4 起伏度指标分级与地质灾害分布关系表
Table 4. Relation between relief index classification and geological hazard distribution
因子 VALUE 指标分级 灾害点数量/个 灾害点比例/% 分级面积比例/% 起伏度 1 0°~10° 49 21.78 51.87 2 10°~24° 77 34.22 29.70 3 24°~42° 65 28.89 13.47 4 42°~227° 34 15.11 4.96 表 5 地面曲率指标分级与地质灾害分布关系表
Table 5. Relation between ground curvature index classification and geological hazard distribution
因子 VALUE 指标分级 灾害点数量/个 灾害点比例/% 分级面积比例/% 地面曲率 1 0~3 80 35.56 66.61 2 3~7 73 32.44 21.23 3 7~14 43 19.11 8.87 4 14~45 29 12.89 3.29 表 6 工程地质岩组指标分级与地质灾害分布关系表
Table 6. Relation table between classification of engineering geological rock group index and distribution of geological hazards
因子 指标分级 灾害点数量/个 灾害点比例/% 分级面积比例/% 工程地质岩组 较软弱碎屑岩组 21 9.33 1.25 较坚硬碎屑岩及碳酸盐岩组 130 57.78 36.97 块状花岗岩组 34 15.11 12.23 沙土多层结构土体 4 1.78 11.00 砾类土双层结构土体 36 16.00 38.55 表 7 距断层距离指标分级与地质灾害分布关系表
Table 7. Relation between distance index classification from fault and distribution of geological hazards
因子 VALUE 指标分级/m 灾害点数量/个 灾害点比例/% 分级面积比例/% 距断层距离 1 0~1000 20 8.89 24.32 2 1000~3000 96 42.67 26.81 3 3000~5000 93 41.33 32.22 4 >5000 16 7.11 16.65 表 8 距道路距离指标分级与地质灾害分布关系表
Table 8. Distance from road index classification and geological hazard distribution relationship table
因子 VALUE 指标分级/m 灾害点数量/个 灾害点比例/% 分级面积比例/% 距道路距离 1 0~30 149 66.23 60.71 2 30~100 16 7.11 2.52 3 100~300 21 9.33 4.86 4 300~500 18 8.00 10.56 5 500~1000 3 1.33 7.87 6 >1000 18 8.00 13.48 表 9 距水系距离指标分级与地质灾害分布关系表
Table 9. Relation between distance index classification from water system and distribution of geological hazards
因子 VALUE 指标分级/m 灾害点数量/个 灾害点比例/% 分级面积比例/% 距水系距离 1 0~300 187 83.12 52.18 2 300~600 19 8.44 24.37 3 600~900 9 4.00 10.41 4 900~1200 3 1.33 4.55 5 >1200 7 3.11 8.49 表 10 降雨量指标分级与地质灾害分布关系表
Table 10. Relationship between rainfall index classification and geological disaster distribution
因子 VALUE 指标分级/mm 灾害点数量/个 灾害点比例/% 分级面积比例/% 降雨量 1 163.8~238.7 4 1.78 1.93 2 238.7~304.6 50 22.22 4.13 3 304.6~382.3 99 44.00 47.19 4 382.3~441.2 72 32.00 46.75 表 11 评价因子相关性系数
Table 11. Correlation coefficient of evaluation factors
评价因子 高程 坡度 坡向 起伏度 地面曲率 工程地质岩组 距水系距离 距道路距离 距断层距离 降雨量 高程 1 坡度 0.33 1 坡向 -0.01 0.01 1 起伏度 0.61 0.68 0.01 1 地面曲率 0.03 0.31 0.01 0.62 1 工程地质岩组 -0.38 0.13 -0.01 -0.21 -0.23 1 距水系距离 0.11 0.06 0.01 0.06 0.03 -0.10 1 距道路距离 -0.34 -0.29 0.01 -0.29 -0.23 0.31 0.01 1 距断层距离 0.19 0.12 0.04 0.12 0.11 -0.17 0.06 -0.05 1 降雨量 -0.42 -0.45 -0.02 -0.44 -0.33 0.45 -0.47 0.17 -0.06 1 表 12 评价因子信息量值(I)、确定性系数值以及加权值(J)
Table 12. Evaluation factor information quantity value(I), certain factor value(CF) and weight value(J)
评价因子 分级指标 信息量值I CF值 加权值J 高程/m 461~788 -1.4712 -0.7801 1.1432 788~1149 0.1934 0.1821 0.0344 1149~1576 1.0527 0.6735 0.7034 1576~2001 0.0112 0.0182 0.0001 2001~2852 -0.9842 -0.6317 0.6228 坡向/(°) 北(0~22.5) 0.1183 -0.5382 -0.0637 东北(22.5~67.5) 0.4453 -0.2973 -0.1324 东北(67.5~112.5) 0.3266 -0.2716 -0.0887 东南(112.5~157.5) -0.1370 0.2269 -0.0311 南(157.5~202.5) -0.2620 0.2583 -0.0677 西南(202.5~247.5) -0.0882 0.1782 -0.0157 西(247.5~292.50) 0.2376 0.0947 0.0225 西北(292.5~337.5) 0.2291 0.2257 0.0517 北(337.5~360) 0.1757 -0.1931 -0.0339 坡度/(°) 0~6 -0.7614 -0.4563 0.3474 6~16 0.4441 0.1748 0.0776 16~26 0.7125 0.3452 0.2460 26~72 0.9639 0.6667 0.6426 地面曲率 0~3 -0.7142 -0.4527 0.3233 3~7 0.4292 0.3776 0.1621 7~14 1.3021 0.5656 0.7364 14~45 2.2925 0.7716 1.7690 距水系距离/m 0~300 -0.1244 0.5952 -0.0741 300~600 0.6368 -0.4865 -0.3098 600~900 1.4874 -0.4299 -0.6394 900~1200 2.3140 -0.5671 -1.3122 >1200 1.6910 -0.4568 -0.7724 距道路距离/m 0~30 -0.3486 0.3979 -0.1387 30~100 2.8314 0.7816 2.2131 100~300 2.1769 0.6686 1.4554 300~500 1.3999 0.1219 0.1707 500~1000 1.6941 -0.7506 -1.2716 >1000 1.1561 -0.1129 -0.1305 距断层距离/m 0~1000 0.1391 -0.4581 -0.0637 1000~3000 0.0417 0.5948 0.0248 3000~5000 -0.1419 0.4916 -0.0698 >5000 0.5181 -0.3653 -0.1893 工程地质岩组 较软弱碎屑岩组 3.1679 0.8929 2.8285 碎屑岩及碳酸盐岩组 -0.2226 0.3946 -0.0879 块状花岗岩组 0.8835 0.2277 0.2012 沙土多层结构土体 0.9897 -0.8351 -0.8265 砾类土双层结构土体 -0.2645 -0.5738 0.1518 降雨量/mm 163.8~238.7 2.9452 -0.0384 -0.1132 238.7~304.6 2.1827 0.8419 1.8377 304.6~382.3 -0.2524 -0.0260 0.0066 382.3~441.2 -0.2433 -0.2895 0.0704 表 13 信息量-CF模型易发性分区统计
Table 13. Statistics of prone partition of information-certain factor model
易发性分区 信息量模型 CF模型 信息量-CF耦合模型 分区面积/km2 占比/% 地灾数量/个 占比/% 灾害点密度/个/100 km2 分区面积/km2 占比/% 地灾数量/个 占比/% 灾害点密度/个/100 km2 分区面积/km2 占比/% 地灾数量/个 占比/% 灾害点密度/个/100 km2 极高易发区 405.50 4.25 31 13.78 7.64 388.68 4.08 28 12.44 7.20 498.38 5.23 33 14.67 6.62 高易发区 2298.66 24.12 111 49.33 4.83 2355.47 24.71 107 47.56 4.54 2251.71 23.62 115 51.11 5.10 中易发区 2725.31 28.59 52 23.11 1.91 2694.63 28.27 53 23.56 1.97 2741.02 28.76 50 22.22 1.82 低易发区 4102.53 43.04 31 13.78 0.76 4093.22 42.94 37 16.44 0.90 4040.89 42.39 27 12.00 0.67 -
Bi J A, Xu P H, Song S Y, et al. 2022. Assessment of the susceptibility to geological hazards in the Manas River Basin based on the coupled information value-logistic regression model[J]. Journal of Engineering Geology, 30 (5): 1549-1560. Chen B, Wang Y, Huang X, et al. 2022. Spatial prediction of landslide susceptibility in mountainous and hilly counties based on the coupling model of information value-random forest[J]. Jiangxi Science, 40 (5): 914-919, 964. Chen X Y, Shi Y, Wen Y X, et al. 2023. Landslide susceptibility evaluation based on certainty factor and support vector machines[J]. Science Technology and Engineering, 23 (2): 518-527. He J, Li J Q, Gao P, et al. 2022. Geological hazard susceptibility evaluation in Yangling district basing on the weighted information method[J]. Journal of Geological Hazard and Environmental Protection, 33 (3): 35-41. Li P, Ye H, Tan S C, 2021. Evaluation of geological hazard in Yongde County based on analytic hierarchy process[J]. Research of Soil and Water Conservation, 28 (5): 394-399, 406. Li Y P, Zhao X Y, Luo Y J, et al. 2022. Impact evaluation of mine geological environment based on weighted coupling model: A case study of Panzhihua City[J]. Journal of Neijiang Normal University, 37 (6): 59-65. Liu F Z, Dai T Y, Wang J C, et al. 2023. Geological hazard susceptibility evaluation by coupled random forest and information model: a case study of Gongbujiangda County, Tibet Autonomous Region[J]. Journal of Safety and Environment, 23 (7): 2428-2438. Liu L Y, Gao H Y, Li Z. 2021. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia County[J]. Periodical of Ocean University of China, 51 (10): 121-129. Liu L Y, Gao H Y. 2023. Landslide susceptibility assessment based on coupling of WOE model and Logistic regression model[J]. Journal of Engineering Geology, 31 (1): 165-175. Li Z T, Wang T, Zhou Y, et al. 2019. Landslide susceptibility assessment based on information, logistic regression and coupling model: a case study of Shatangchuan Basin, Qinghai Province[J]. Geoscience, 33 (1): 235-245. Luo L G, Pei X J, Huang R Q, et al. 2021. Landslide susceptibility assessment in Jiuzhaigou Scenic Area with GIS based on certainty factor and Logistic Regression Model[J]. Journal of Engineering Geology, 29 (2): 526-535. Nwazelibe V E, Unigwe C O, Egbueri J C. 2022. Integrationand comparison of algorithmic weight of evidence and logistic regression in landslide susceptibility mapping of the Orumba North erosion-prone region, Nigeria[J]. Modeling Earth Systems and Environment, 9 (1): 967-986. Qin Y G, Yang G L, Jiang X Y, et al. 2020. Geohazard susceptibility assessment based on integrated certainty factor model and logistic regression model for Kaiyang, China[J]. Science Technology and Engineering, 20 (1): 96-103. Rai D K, Xiong D H, Zhao W, et al. 2022. An investigation of landslide susceptibility using Logistic Regression and Statistical Index Methods in Dailekh District, Nepal[J]. Chinese Geographical Science, 32 (5): 834-851. doi: 10.1007/s11769-022-1304-2 Reichenbach P, Rossi M, Malamud B D, et al. 2018. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 180 (1): 60-91. Rui D, Pei H X, Sheng Y S, et al. 2022. Evaluation of landslide susceptibility in mountainous areas of Changji City at the northern foot of Tianshan Mountain based on Coupled Model of Weight of Evidence and Shanon's Entropy[J]. Journal of Research in Science and Engineering, 4(11): 42-49. Shi Z X, Wang Z H, Che Z G, et al. 2022. Evaluation of geological disaster susceptibility of the first mountain in Xuyi county, Jiangsu Province based on information quantity method[J]. Shanghai Land and Resources, 43 (4): 56-60, 120. Tian C S, Liu X L, Wang J. 2016. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology and Engineering Geology, 43 (6): 154-161, 170. Tian Q, Zhang B, Guo J F, et al. 2020. Landslide susceptibility assessment based on the coupling model of information value and logistic re-gression[J]. Science Technology and Engineering, 20 (21): 8460-8468. Wang G W, Li M B, Jiang M G, et al. 2020. Risk assessment and zoning of the geological hazards in Mayang County of Hunan Province based on weighted information model[J]. Geology and Resources, 29 (3): 266-272. Wang J J, Zhu S, Luo X G, et al. 2020. Refined micro-scale geological disaster susceptibility evaluation based on UAV tilt photography data and weighted certainty factor method in mountainous area[J]. Ecotoxicology and Environmental Safety, 189 : 1-8. Wang X D, Zhang C B, Wang C, et al. 2022. Geological disaster susceptibility in Helong City based on logistic regression and random forest[J]. Journal of Jilin University(Earth Science Edition), 52 (6): 1957-1970. Wang X G, Zhou Y M, Huang W X, et al. 1999. Qualitative interpretation of water flooded zones with fuzzy synthetic judgement method[J]. Well Logging Technology, 23 (1): 46-49. Wang X H. 2020. Landslides susceptibility evaluation in loess mountain—A case study of Shanxi Linxian—Shaanxi Qingjian area[D]. Xi'an: Xi'an University of Science and Technology. Xu S H, Liu J P, Wang L H, et al. 2020. Landslide susceptibility assessment method incorporating index of entropy based on support vector machine: A case study of Shaanxi province[J]. Geomatics and Information Science of Wuhan University, 45 (8): 1214-1222. Yan Y Q, Yang Z H, Zhang X J, et al. 2021. Landslide susceptibility assessment based on weight-of-evidence modeling of the Batang fault zone, easter Tibetan Plateau[J]. Geoscience, 35 (1): 26-37. Zhao X Y, Li Y P, Tan S C. 2022. Evaluation of mine geological hazard susceptibility of coupling CF with information model based on GIS in Panzhihua City[J]. Journal of Yunnan University(Natural Science Edition), 44 (4): 754-764. 毕结昂, 徐佩华, 宋盛渊, 等. 2022. 基于信息量-逻辑回归耦合模型的玛纳斯河流域地质灾害易发性评价[J]. 工程地质学报, 30 (5): 1549-1560. doi: 10.13544/j.cnki.jeg.2022-0327 陈博, 王洋, 黄信, 等. 2022. 基于信息量-随机森林耦合模型的山地丘陵县滑坡灾害易发性空间预测[J]. 江西科学, 40 (5): 914-919, 964. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKX202205016.htm 陈芯宇, 师芸, 温永啸, 等. 2023. 基于确定性系数与支持向量机的滑坡易发性评价[J]. 科学技术与工程, 23 (2): 518-527. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202302011.htm 贺俊, 李金钱, 高沛, 等. 2022. 基于加权信息量法的杨陵区地质灾害易发性评价[J]. 地质灾害与环境保护, 33 (3): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB202203006.htm 李萍, 叶辉, 谈树成. 2021. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究, 28 (5): 394-399, 406. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202105055.htm 李永平, 赵晓燕, 罗杨洁, 等. 2022. 基于加权耦合模型的矿山地质环境影响性评价——以攀枝花市为例[J]. 内江师范学院学报, 37 (6): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-NJSG202206010.htm 刘福臻, 戴天宇, 王军朝, 等. 2023. 耦合Random Forest算法与信息量模型的地质灾害易发性评价——以西藏自治区工布江达县例[J]. 安全与环境学报, 23 (7): 2428-2438. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202307036.htm 刘璐瑶, 高惠瑛, 李照. 2021. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版), 51 (10): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202110014.htm 刘璐瑶, 高惠瑛. 2023. 基于证据权与Logistic回归模型耦合的滑坡易发性评价[J]. 工程地质学报, 31 (1): 165-175. doi: 10.13544/j.cnki.jeg.2020-482 栗泽桐, 王涛, 周杨, 等. 2019. 基于信息量、逻辑回归及其耦合模型的滑坡易发性评估研究: 以青海沙塘川流域为例[J]. 现代地质, 33 (1): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901023.htm 罗路广, 裴向军, 黄润秋, 等. 2021. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报, 29 (2): 526-535. doi: 10.13544/j.cnki.jeg.2019-202 史忠鑫, 王振海, 车增光, 等. 2022. 基于信息量法的江苏盱眙第一山地质灾害易发性评价[J]. 上海国土资源, 43 (4): 56-60, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD202204011.htm 覃乙根, 杨根兰, 江兴元, 等. 2020. 基于确定性系数模型与逻辑回归模型耦合的地质灾害易发性评价——以贵州省开阳县为例[J]. 科学技术与工程, 20 (1): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202001015.htm 田春山, 刘希林, 汪佳. 2016. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质, 43 (6): 154-161, 170. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606025.htm 田钦, 张彪, 郭建飞, 等. 2020. 基于信息量和逻辑回归耦合模型的滑坡易发性评价[J]. 科学技术与工程, 20 (21): 8460-8468. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202021005.htm 王国卫, 李明波, 蒋明光, 等. 2020. 基于加权信息量模型的湖南省麻阳县地质灾害危险性评价与区划[J]. 地质与资源, 29 (3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202003009.htm 王向公, 周艳敏, 黄文新, 等. 1999. 模糊综合判别定性划分水淹层[J]. 测井技术, 23 (1): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS901.010.htm 王小浩. 2020. 黄土山区滑坡敏感性评价研究——以山西临县-陕西清涧地区为例[D]. 西安: 西安科技大学. 王雪冬, 张超彪, 王翠, 等. 2022. 基于Logistic回归与随机森林的和龙市地质灾害易发性评价[J]吉林大学学报(地球科学版), 52 (6): 1957-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202206016.htm 徐胜华, 刘纪平, 王想红, 等. 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例[J]. 武汉大学学报(信息科学版), 45 (8): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008012.htm 闫怡秋, 杨志华, 张绪教, 等. 2021. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质, 35 (1): 26-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101004.htm 赵晓燕, 李永平, 谈树成. 2022. GIS支持下CF与信息量耦合模型的攀枝花市矿山地质灾害易发性评价[J]. 云南大学学报(自然科学版), 44 (4): 754-764. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202204011.htm -