新疆崩滑流地质灾害孕灾环境分区及其形成机制

张紫昭 张天栋 于喜坤 吕倩俐 赖润森 贾竣予 刘新宇

张紫昭, 张天栋, 于喜坤, 等. 2023. 新疆崩滑流地质灾害孕灾环境分区及其形成机制[J]. 工程地质学报, 31 (4): 1129-1144. doi: 10.13544/j.cnki.jeg.2023-0214
引用本文: 张紫昭, 张天栋, 于喜坤, 等. 2023. 新疆崩滑流地质灾害孕灾环境分区及其形成机制[J]. 工程地质学报, 31 (4): 1129-1144. doi: 10.13544/j.cnki.jeg.2023-0214
Zhang Zizhao, Zhang Tiandong, Yu Xikun, et al. 2023. Zonation of disaster environments of collapse, landslide and debris flow geologic hazards and their formation mechanisms in Xinjiang[J]. Journal of Engineering Geology, 31(4): 1129-1144. doi: 10.13544/j.cnki.jeg.2023-0214
Citation: Zhang Zizhao, Zhang Tiandong, Yu Xikun, et al. 2023. Zonation of disaster environments of collapse, landslide and debris flow geologic hazards and their formation mechanisms in Xinjiang[J]. Journal of Engineering Geology, 31(4): 1129-1144. doi: 10.13544/j.cnki.jeg.2023-0214

新疆崩滑流地质灾害孕灾环境分区及其形成机制

doi: 10.13544/j.cnki.jeg.2023-0214
基金项目: 

新疆维吾尔自治区重点研发项目 2021B030041

国家自然科学基金项目 41967036

详细信息
    通讯作者:

    张紫昭(1981-),男,博士,教授,博士生导师,主要从事地质灾害与矿山地质环境方面的科研与教学工作. E-mail:253569481@qq.com

  • 中图分类号: P642.21;P642.22;P642.23

ZONATION OF DISASTER ENVIRONMENTS OF COLLAPSE, LANDSLIDE AND DEBRIS FLOW GEOLOGIC HAZARDS AND THEIR FORMATION MECHANISMS IN XINJIANG

Funds: 

the Key R&D Projects of Xinjiang Uygur Autonomous Region 2021B030041

the National Natural Science Foundation of China 41967036

  • 摘要: 新疆地域广阔,地质灾害点多、面广,自然地理条件和地质环境背景差距较大,因此地质灾害孕灾环境合理分区至关重要。本文在综合考虑地形地貌、地质构造、大气降水和工程地质条件等因素对崩滑流地质灾害分布影响的基础上进行了孕灾环境分区,并选取了不同典型区域内有代表性的崩滑流地质灾害开展影响因素和形成机制的专门研究。结果如下:(1)将新疆地区崩滑流地质灾害的孕灾环境划分为阿尔泰山与准噶尔西部山区、准噶尔盆地区、天山北麓区、天山南麓区、吐哈盆地区、塔里木盆地区、昆仑山区等共计7个区域;(2)空间分布上,新疆地区独有的崩滑流地质灾害分布规律是沿阿尔泰山、天山、昆仑山环绕准噶尔盆地和塔里木盆地,呈开口朝东的“E”字型分布,在时间分布上,新疆崩滑流地质灾害的发生与大气降水、冰雪融化关系最为密切;(3)阿尔泰山与准噶尔西部山区、天山南坡、阿尔金山与昆仑山3个区域崩塌和泥石流地质灾害最为发育,天山北坡滑坡和泥石流地质灾害最为发育,地形地貌、地层岩性、降水等地质环境条件与这些灾害的形成密不可分。本文的研究结果对于总结归纳新疆崩滑流地质灾害的分布、孕灾环境、孕灾机制等具有一定的推动作用,有利于进一步解决“地质灾害在哪里”这一地质灾害防治关键问题。
  • 图  1  新疆崩滑流地质灾害分布与地形地貌单元关系图

    Figure  1.  Relationship diagram between geological disaster distribution and landform unit of collapse,landslide and debris flow in Xinjiang

    图  2  新疆地形地貌分区与地质灾害数量、密度关系图

    Figure  2.  Relationship between topographic and geomorphological zoning and the number and density of geological disasters in Xinjiang

    图  3  新疆崩滑流地质灾害分布与地质构造关系图

    Figure  3.  Map of collapse,landslide and debris flow geological disaster distribution and geological structure in Xinjiang

    图  4  新疆地质构造分区与地质灾害数量、密度关系图

    Figure  4.  Relationship between geological structure zoning and the number and density of geological disasters in Xinjiang

    图  5  新疆崩滑流地质灾害分布与大气降雨分布关系图

    Figure  5.  Relationship between the distribution of collapse,landslide and debris flow geological disasters and atmospheric rainfall in Xinjiang

    图  6  新疆气候分区与地质灾害数量、密度关系图

    Figure  6.  Relationship between climate zoning and the number and density of geological disasters in Xinjiang

    图  7  新疆崩滑流地质灾害分布与工程地质分区关系图

    Figure  7.  The distribution of collapse,landslide and debris flow geological disasters and engineering geological zoning in Xinjiang

    图  8  新疆工程地质分区与地质灾害数量、密度关系图

    Figure  8.  Relationship between engineering geological zoning and the number and density of geological disasters in Xinjiang

    图  9  新疆崩滑流地质灾害孕灾环境分区图

    Figure  9.  Zonation of disaster environments of collapse,landslide and debris flow geologic hazards in Xinjiang

    图  10  新疆崩滑流地质灾害分布图

    Figure  10.  Map of collapse,landslide and debris flow geologic hazards in Xinjiang

    图  11  新疆地质灾害空间分布图

    Figure  11.  Spatial distribution map of geological disasters in Xinjiang

    图  12  新疆2011~2022年各月份地质灾害发生数量分布柱状图

    Figure  12.  The histogram of the number distribution of geological disasters during 2011~2022 in Xinjiang

    图  13  阿勒泰骆驼峰崩塌灾害示意图

    Figure  13.  Schematic diagram of the Luotuofeng collapse in Altay

    图  14  阿勒泰将军沟泥石流灾害示意图

    Figure  14.  Schematic diagram of the Jiangjungou debris flow disaster in Altay

    图  15  新源县阿勒玛勒滑坡泥石流灾害链示意图

    Figure  15.  Schematic diagram of Alemale Landslide and debris flow disaster chain in Xinyuan County

    图  16  昌吉市庙尔沟滑坡灾害示意图

    Figure  16.  Schematic diagram of Miaoergou Landslide disaster in Changji City

    图  17  温宿卡坡崩塌灾害示意图

    Figure  17.  Schematic diagram of Wensukapo collapse disaster

    图  18  柯坪县贝勒克勒克泥石流灾害示意图

    Figure  18.  Schematic diagram of Beilekeleke debris flow in Keping County

    图  19  叶城县柯克亚乡泥石流灾害示意图

    Figure  19.  Schematic diagram of debris flow in Yecheng County

    图  20  叶城县西合休崩塌灾害示意图

    Figure  20.  Schematic diagram of Xihexiu collapse disaster in Yecheng County

    表  1  各孕灾环境分区地质灾害统计表

    Table  1.   Statistical table of geological disasters in each disaster-inducing environment partition

    孕灾环境分区 面积/km2 崩塌 滑坡 泥石流 小计 密度/处·(100 km)-2 百分比/%
    阿尔泰山地和准噶尔西部山地区 112 207 1555 118 247 1920 1.71 11.76
    昆仑山区 481 759 1276 236 1387 2899 0.60 17.76
    天山南麓区 283 204 1985 101 723 2809 0.99 17.21
    天山北麓区 148 745 3354 3411 1126 7891 5.31 48.34
    塔里木盆地区 150 843 266 10 174 450 0.30 2.76
    吐哈盆地区 83 637 80 0 26 106 0.13 0.65
    准噶尔盆地区 364 769 128 27 93 248 0.07 1.52
    下载: 导出CSV

    表  2  新疆崩滑流地质灾害规模统计表

    Table  2.   Statistical table of geological disaster scale of collapse,landslide and debris flow in Xinjiang

    规模 灾害类型及占比/%
    崩塌 滑坡 泥石流
    巨型 0.07 0.88 1.50
    大型 0.92 4.69 2.58
    中型 9.33 12.95 15.81
    小型 89.67 81.48 80.09
    下载: 导出CSV

    表  3  新疆已发生崩滑流的地质灾害灾情级别统计表

    Table  3.   Statistical table of disaster level of collapse,landslide and debris flow geological disasters in Xinjiang

    规模 灾害类型及占比/%
    崩塌 滑坡 泥石流
    特大型(处) 0.01 0.00 0.01
    大型(处) 0.05 0.01 0.01
    中型(处) 0.52 0.18 0.23
    小型(处) 46.79 28.00 21.00
    下载: 导出CSV
  • Chai H X,Ou Y,Chen X,et al. 2009. A new schema of Xinjiang geomorphologic regionalization[J]. Arid Land Geography,32 (1): 95-106.
    Chen T, Zhong Z Y, Niu R Q, et al. 2020. Mapping landslide susceptibility based on deep belief network[J]. Geomatics and Information Science of Wuhan University, 45 (11): 1809-1817.
    Chen Y N, Li W H. 1995. Study on geological hazard in Xinjiang arid region[J]. Marine Geology & Quaternary Geology, 15 (3): 121-128.
    Chen Y N. 1993. Systematic analysis on the formation of geological hazards in Xinjiang arid region[J]. The Chinese Journal of Geological Hazard and Control, 4 (3): 13-19, 34.
    Cheng W M, Chai H X, Zhou C H, et al. 2009. The spatial distribution patterns of digital geomorphology in Xinjiang[J]. Geographical Research, 28(5): 1157-1169.
    Cheng H X, Lin Y J, Wang Y. 2023. Extraction and features of precipitation clustering areas in Xinjiang based on GPM[J]. Journal of Arid Land Resources and Environment, 37 (3): 98-105.
    Escanoglu M, Gokceoglu C. 2002. Assessment of landslide susceptibility for a landslide-prone area(north of Yenice, NW Turkey) by fuzzy approach[J]. Environmental Geology, 41 (6): 720-730. doi: 10.1007/s00254-001-0454-2
    Feng J, Zhu Z X, Zhao T Y, et al. 2022. Subdivision of tectonic units and its metallogenesis in Xinjiang[J]. Geology in China, 49 (4): 1154-1178.
    Guan Y. 2015. Research on the evaluation of risk factors and model about geological disasters in Xinjiang[D]. Fuxin: Liaoning Technical University.
    Hao R H, Zhang Z Z, Guo Z Z. 2022. Investigation of changes to triaxial shear strength parameters and microstructure of Ili loess with drying-wetting cycles[J]. Materials, 15(1): 255.
    Hu W Z. 1992. Geological disasters and disaster reduction and prevention countermeasures in Xinjiang[J]. Journal of Geological Hazards and Environment Preservation, 3 (2): 16-22.
    Hu W Z. 1994. Arid environment, landslides and debris flow in Xinjiang and its prevention and controlling[J]. Journal of Geological Hazards and Environment Preservation, 5 (3): 1-7.
    Kalantar B, Pradhan B, Naghibi S A, et al. 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine(SVM), logistic regression(LR) and artificial neural networks(ANN)[J]. Geomatics Natural Hazards & Risk, 9 (1): 49-69.
    Li Z Y, Li Y X, Li W H, et al. 2021. Sedimentary characteristics of Paleogene-Neogene in Fenwei Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica), 56 (4): 1120-1133.
    Liang L P, Liu Y G, Tnag Z H, et al. 2019. Geologic hazards susceptibility assessment based on weighted information value——A case study in Luding County, Sichuan Province[J]. Bulletin of Soil and Water Conservation, 39 (6): 176-182, 321.
    Liang S C, Qiao H, Lü D, et al. 2023. Distribution characteristics and main controlling factors of geohazards in Ili Valley[J]. Arid Land Geography, 46(6): 880-888.
    Liu M X, Chen X, Yang S N. 2014. Zonation of landslide risk with logistic regression model and certainty factor[J]. Journal of Engineering Geology, 22 (6): 1250-1256.
    Liu Y Y, Wei X L, Chen B C, et al. 2020. Analysis of geological conditions and influencing factors of geological disasters in Ili area, Xinjiang[J]. World Nonferrous Metals, (2): 163-165.
    Lü Q L, Zhang Z Z, Liu T C. 2021. The trend of permeability of loess in Ili, China, under freeze-thaw cycles and its microscopic mechanism[J]. Water, 13(22): 3257. doi: 10.3390/w13223257
    Mu Y X, Zhang Z Z, Zhou T S, et al. 2023. Effect of mica content on mechanical properties of Ili River Valley loess under the impact of freezing and thawing[J]. Sustainability, 15(4): 3329. doi: 10.3390/su15043329
    Pham B T, Bui D T, Prakash I, et al. 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area(India) using GIS[J]. Catena, 149 : 52-63. doi: 10.1016/j.catena.2016.09.007
    Ren T. 2022. Risk assessment of geological hazards in Pingshan County based on GIS[D]. Shijiazhuang: Hebei GEO University.
    Shi G M, Li X Y, Guo Z K, et al. 2022. Effect of mica content on shear strength of the Ili loess under the Dry-Wet cycling condition[J]. Sustainability, 14(15): 9569. doi: 10.3390/su14159569
    Tang C, Zhu D K. 2002. Assessment of debris flow risk of Yunnan Province by using GIS[J]. Scientia Geographica Sinica, 22 (3): 300-304.
    Teng J W, Zhang Y Q, Si X, et al. 2013. Some thought on the buiding of the base of the development of economy and mineral resources and prevention of earthquakes in Uygur Autonomous Region of Xinjiang for the construction of the marine-continental channel of western Asia and western Europe[J]. Geology in China, 40 (5): 1329-1350.
    Wang J Y. 2022. Evolution law of precipitation in Xinjiang under the influence of climate change[J]. Water Resources Planning and Design, 2022 (7): 25-30.
    Wen H J, Huang J H, Yuan X H, et al. 2020. GIS-SVM prediction of surrounding rock stability in mountain tunnel based on numerical experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 39 (S1): 2920-2929.
    Wu C R, Zhao D M, Liu C J, et al. 2020. Landslide susceptibility assessment of Longchuan County based on GlS and information value model[J]. Northwestern Geology, 53 (2): 308-312.
    Wu S Y, Jing G X. 2020. Analysis of the distribution characteristics and causes of landslide in Xinjiang[J]. Ground Water, 42 (4): 142-143, 225.
    Wu S Y. 2021. Disaster-generating environment and disaster-causing factors of landslide geological disaster in Pingbian County, Yunnan Province[D]. Kunming: Yunnan University.
    Xia C, Guo Y B. 2023. Thoughts and countermeasures for promoting the construction of the core area of Xinjiang Silk Road Economic Belt with high quality under the new development pattern[J]. Social Sciences in Xinjiang, (2): 52-61.
    Xu Q. 2020. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 28 (2): 360-374.
    Yi X T, Shang Y J, Li S D, et al. 2021. Research status and prospect of slope hazards in Xinjiang and Central Asia[J]. Xinjiang Geology, 39 (1): 156-161.
    Yin G, Li L H, Meng X Y, et al. 2017. A research of precipitation trend and fluctuation in Xinjiang from 1979 to 2013[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 38 (5): 19-27.
    Yuan F C, Yang F X. 1990. The basic geomorphologic characteristics of Xinjiang, China[J]. Arid Land Geography, 13 (3): 1-5.
    Zeng Q L, Shang Y J, Hu G S, et al. 2016. Investigation and Mechanism of the landslide-debris flow hazards on July 6 in Yecheng Country, Xinjiang[J]. Journal of Engineering Geology, 24 (6): 1145-1156.
    柴慧霞, 欧阳, 陈曦, 等. 2009. 新疆地貌区划的一个新方案[J]. 干旱区地理, 32 (1): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200901017.htm
    陈涛, 钟子颖, 牛瑞卿, 等. 2020. 利用深度信念网络进行滑坡易发性评价[J]. 武汉大学学报(信息科学版), 45 (11): 1809-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011018.htm
    陈亚宁, 李卫红. 1995. 新疆干旱区地质灾害研究[J]. 海洋地质与第四纪地质, 15 (3): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199503015.htm
    陈亚宁. 1993. 新疆干旱区地质灾害形成的系统分析[J]. 中国地质灾害与防治学报, 4 (3): 13-19, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199303002.htm
    程维明, 柴慧霞, 周成虎, 等. 2009. 新疆地貌空间分布格局分析[J]. 地理研究, 28(5): 1157-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200905001.htm
    程红霞, 林粤江, 王勇. 2023. 基于GPM的新疆降水聚集区域提取及特征分析[J]. 干旱区资源与环境, 37 (3): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202303014.htm
    冯京, 朱志新, 赵同阳, 等. 2022. 新疆大地构造单元划分及成矿作用[J]. 中国地质, 49 (4): 1154-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204009.htm
    关颖. 2015. 新疆地区地质灾害危险因子评估与评价模型研究[D]. 阜新: 辽宁工程技术大学.
    胡卫忠. 1992. 新疆地质灾害及减灾防治对策[J]. 地质灾害与环境保护, 3 (2): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB199202002.htm
    胡卫忠. 1994. 新疆的干旱环境与滑坡、泥石流及其防治对策[J]. 地质灾害与环境保护, 5 (3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB199403000.htm
    李兆雨, 李永项, 李文厚, 等. 2021. 汾渭盆地古近系-新近系沉积特征[J]. 地质科学, 56 (4): 1120-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104009.htm
    梁丽萍, 刘延国, 唐自豪, 等. 2019. 基于加权信息量的地质灾害易发性评价——以四川省泸定县为例[J]. 水土保持通报, 39 (6): 176-182, 321. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201906028.htm
    梁世川, 乔华, 吕东, 等. 2023. 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理, 46(6): 880-888. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202306003.htm
    刘明学, 陈祥, 杨珊妮. 2014. 基于逻辑回归模型和确定性系数的崩滑流危险性区划[J]. 工程地质学报, 22 (6): 1250-1256. doi: 10.13544/j.cnki.jeg.2014.06.032
    刘扬扬, 魏学利, 陈宝成, 等. 2020. 新疆伊犁地区的地质条件及地质灾害影响因素分析[J]. 世界有色金属, (2): 163-165. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO202002098.htm
    任涛. 2022. 基于GIS的平山县地质灾害风险性评价[D]. 石家庄: 河北地质大学.
    唐川, 朱大奎. 2002. 基于GIS技术的泥石流风险评价研究[J]. 地理科学, 22 (3): 300-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200203007.htm
    滕吉文, 张永谦, 司芗, 等. 2013. 新疆经济发展与资源、灾害和构筑西亚-西欧海陆大通道的思考[J]. 中国地质, 40 (5): 1329-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201305001.htm
    王姣妍. 2022. 气候变化影响下的新疆降水量演变规律[J]. 水利规划与设计, (7): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH202207005.htm
    文海家, 黄健豪, 袁性涵, 等. 2020. 基于数值试验的山岭隧道围岩稳定性GIS-SVM预测[J]. 岩石力学与工程学报, 39 (S1): 2920-2929. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1033.htm
    吴常润, 赵冬梅, 刘澄静, 等. 2020. 基于GIS和信息量模型的陇川县滑坡易发性评价[J]. 西北地质, 53 (2): 308-320. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202002024.htm
    吴绍英, 敬广秀. 2020. 新疆滑坡分布特征及成因探析[J]. 地下水, 42 (4): 142-143, 225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202004049.htm
    吴书一. 2021. 云南省屏边县滑坡地质灾害孕灾环境及致灾因子分析[D]. 昆明: 云南大学.
    夏成, 郭叶波. 2023. 新发展格局下高质量推进新疆丝绸之路经济带核心区建设的思路与对策[J]. 新疆社会科学, (2): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSH202302006.htm
    许强. 2020. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 28 (2): 360-374. doi: 10.13544/j.cnki.jeg.2020-025
    伊学涛, 尚彦军, 李守定, 等. 2021. 新疆及中亚地区斜坡灾害研究现状与展望[J]. 新疆地质, 39 (1): 156-161. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202101028.htm
    殷刚, 李兰海, 孟现勇, 等. 2017. 新疆1979~2013年降水量时空变化特征和趋势分析[J]. 华北水利水电大学学报(自然科学版), 38 (5): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201705003.htm
    袁方策, 杨发相. 1990. 新疆地貌的基本特征[J]. 干旱区地理, 13 (3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199003000.htm
    曾庆利, 尚彦军, 胡桂胜, 等. 2016. 新疆叶城"7 ·6"滑坡泥石流灾害调查与形成机理研究[J]. 工程地质学报, 24 (6): 1145-1156. doi: 10.13544/j.cnki.jeg.2016.06.014
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  76
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-07-18
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回