伊犁地区冻融黄土滑坡形成机理研究

于洋 王根龙 宋飞 王佳运

于洋,王根龙,宋飞,等. 2023. 伊犁地区冻融黄土滑坡形成机理研究[J]. 工程地质学报,31(4):1307-1318. doi: 10.13544/j.cnki.jeg.2023-0222
引用本文: 于洋,王根龙,宋飞,等. 2023. 伊犁地区冻融黄土滑坡形成机理研究[J]. 工程地质学报,31(4):1307-1318. doi: 10.13544/j.cnki.jeg.2023-0222
Yu Yang,Wang Genlong,Song Fei, et al. 2023. Mechanism of formation of freeze-thaw loess landslides in Ili region[J]. Journal of Engineering Geology, 31(4): 1307-1318. doi: 10.13544/j.cnki.jeg.2023-0222
Citation: Yu Yang,Wang Genlong,Song Fei, et al. 2023. Mechanism of formation of freeze-thaw loess landslides in Ili region[J]. Journal of Engineering Geology, 31(4): 1307-1318. doi: 10.13544/j.cnki.jeg.2023-0222

伊犁地区冻融黄土滑坡形成机理研究

doi: 10.13544/j.cnki.jeg.2023-0222
基金项目: 

中国地质调查项目:南疆兵团师市规划建设区资源环境综合地质调查 DD20201119

详细信息
    作者简介:

    于洋(1998-),男,硕士生,主要从事工程地质与地质灾害研究. E-mail:2640633435@qq.com

    通讯作者:

    王根龙(1975-),男,博士,教授级高级工程师,主要从事岩质滑坡和黄土滑坡的调查评价、成因机理及防治技术研究. E-mail: Wang2006@mail.iggcas.ac.cn

  • 中图分类号: P642.22

MECHANISM OF FORMATION OF FREEZE-THAW LOESS LANDSLIDES IN ILI REGION

Funds: 

the China Geological Survey Project: Comprehensive Geological Survey of Resources and Environment in the Planning and Construction Area of South Xinjiang Corps Division DD20201119

  • 摘要: 伊犁地区属典型季节性冻土区,冻融黄土滑坡发育强烈,对人民生命财产安全造成巨大隐患。本文以伊宁县喀拉亚尕奇乡冻融黄土滑坡作为研究对象,采用现场实地调查、原位地温监测、室内试验和数值模拟方法等手段,开展冻融黄土滑坡形成机理研究。通过分析研究区内冻融黄土滑坡的发育特征及影响因素,证实了黄土滑坡表层土体受冻融循环作用的长期影响,并且将研究区内的季节冻融循环总结为未冻期、交替冻结期、冻结期、融解期4个阶段。结果表明,原状黄土的黏聚力受冻融循环次数的影响较大,在冻融循环4次时降低幅度达到最大,最后黏聚力有趋于水平的趋势;随着冻融循环次数的加大,内摩擦角呈现下降的趋势,但下降幅度较小,影响的度数为3°~5°。模拟结果显示冻融黄土滑坡的冻结滞水效应显著,冻结期由于冻结层强度较大,滑坡稳定性不降反增,初始融化阶段,斜坡稳定性骤降,处于整个冻融过程中最不稳定阶段。研究表明冻融黄土滑坡的形成受冻融循环作用和冻结滞水作用的双重影响。
  • 图  1  研究区地理位置

    Figure  1.  Location of the study area

    图  2  研究区典型冻融黄土滑坡群

    Figure  2.  Typical freeze-thaw to loess landslide complexes in the study area

    图  3  冻融黄土滑坡群基本特征

    a. 地下水溢出;b. 后缘裂缝发育

    Figure  3.  Basic characteristics of the frozen-thawed loess landslide complex:(a) groundwater overflow; (b) trailing edge crack development

    图  4  2021~2022年冻融阶段气温-地温变化曲线图

    Figure  4.  Temperature-ground temperature change curve for the freeze-thaw phase 2021~2022

    图  5  2月20日至3月4日每天最高地温数据

    Figure  5.  Daily maximum ground temperature data from 20 February to 4 March

    图  6  抽取3d地温与气温昼夜变化曲线图

    Figure  6.  Diurnal graphs of temperature and air temperature in the extracted 3 days

    图  7  冻融循环下黄土黏聚力与内摩擦角变化

    a. 黏聚力;b. 内摩擦角

    Figure  7.  Variation of cohesion and internal friction angle of loess under freeze-thaw cycle:(a) cohesion; (b) angle of internal friction

    图  8  概化计算的HP3计算模型

    Figure  8.  HP3 calculation model for generalised computing

    图  9  冻融过程中地下水渗流场与X向位移场变化

    a. 初始渗流场;b. 冻结30d后渗流场;c. 融化30d后渗流场;d. 冻结水位雍高幅度与距地下水溢出带水平距离关系图;e. 初始X向位移场;f. 冻结30d后X向位移场;g. 初始融化时X向位移场;h. 融化30d后X向位移场

    Figure  9.  Changes in groundwater seepage field and X-directional displacement field during freeze-thaw:(a) initial seepage field; (b) seepage field after 30d of freezing; (c) seepage field after 30d of thawing; (d) plot of the magnitude of the Yong height of the freezing water table versus the horizontal distance from the groundwater overflow zone; (e) initial X-direction displacement field; (f) X-direction displacement field after 30d of freezing; (g) X-direction displacement field at the time of the initial thawing;(h) X-direction displacement field after 30d of thawing

    图  10  冻融黄土滑坡形成过程

    a. 地下水稳态渗流;b. 交替冻结期;c. 冻结期;d. 融化期;e. 冻融作用诱发滑坡;f. 多次冻融循环作用以及冻结滞水产生渐进式后退型滑坡

    Figure  10.  Freeze-thaw loess landslide formation process

    表  1  喀拉亚尕奇乡黄土的物理性质指标

    Table  1.   Indicators of physical properties of loess in Karaia Gaqi Township

    编号 天然含水率
    ω0/%
    比重
    Gs
    天然密度
    ρ0/g·cm-3
    干密度
    ρd/g·cm-3
    液限
    ωL/%
    塑限
    ωP/%
    1 11.6 2.69 1.42 1.27 25.3 20.1
    2 10.5 2.69 1.48 1.34 25.8 20.1
    3 6.4 2.71 1.43 1.35 31.4 21.5
    下载: 导出CSV

    表  2  各岩土体的物理力学参数

    Table  2.   Physical and mechanical parameters of each geotechnical body

    材料 重度/kN·m-3 黏聚力/kPa 内摩擦角/(°) 弹性模量/MPa 泊松比 渗透系数/m·s-1
    天然黄土 14.5 31.0 28.9 18.3 0.34 9.36×10-7
    饱和黄土 19.9 5.3 20.6 8.5 0.50 2.78×10-6
    冻土 20.5 1480.0 10.3 200.0 0.25 9.36×10-8
    冻融循环土 18.0 10.2 25.4 11.6 0.38 4.58×10-6
    下载: 导出CSV
  • Cai H Y. 2020. Analysis of landslide stability and management measures in Kalayakaqi Township, Yining County[J]. Ground Water,42 (2): 141-142.
    Cao X H, Wu B, Shang Y J, et al. 2022. Analysis of characteristics and disaster model seasonal freeze-thaw loess landslides—Taking Yili Kalatumusuke landslide as an example[J]. Xinjiang Geology, 40 (4): 502-506.
    Cheng P, Yang J H, Zhang Y Q. 2017. Mechanistic analysis of seasonal freeze-thaw triggered landslides in loess areas[J]. Journal of China & Foreign Highway, 37 (1): 6-9.
    Cheng X J, Zhang M S, Zhu L F, et al. 2013. Seasonal freeze-thaw action and its effect on the slope soil strength in Heifangtai area, Gansu Province[J]. Geological Bulletin of China, 32 (6): 904-909.
    Dong X H, Zhang A J, Lian J B, et al. 2010. Laboratory study on shear strength deterioration of loess with long-term freezing-thawing cycles[J]. Journal of Engineering Geology, 18 (6): 887-893.
    Gao C H, Liu J L. 1990. Study on loess along the Urumqi River Valley[J]. Quaternary Sciences, (3): 251-260.
    Harris C, Lewkowicz A G. 2000. An analysis of the stability of thawing slopes, Elles-mere Island, Nunavut, Canada[J]. Canadian Geotechnical Journal, 37 (2): 449-462. doi: 10.1139/t99-118
    Hu L Q, Wu P F, Liang F C, et al. 2014. Analyzing the effect of snow cover in spring and winter and air temperature on frozen ground depth in Xinjiang[J]. Journal of Glaciology and Geocryology, 36 (1): 48-54.
    Hu Z Q, Liu Y, Li H R. 2014. Influence of freezing-thawing cycles on strength of loess[J]. Journal of Hydraulic Engineering, 45 (S2): 14-18.
    Jin D W, Niu F J, Li N. 2006. In-situ monitoring and analysis of thaw slumping and deformation in gentle sloping ground of permafrost soils on Qinghai-Tibetan Plateau[J]. Journal of Engineering Geology, 14 (5): 677-682.
    Li G, Zhang M L, Ye W L, et al. 2021. Analysis on freezing-thawing characteristics and frozen stagnant water effect of Heifangtai slope in Gansu province[J]. Journal of Arid Land Resources and Environment, 35 (6): 117-122.
    Mark E R, Richard G L. 1998. Real-time monitoring of active landslides along Highway 50, E1 Dorado County[J]. California Geology, 51 (3): 17-20.
    Ni W K, Shi H Q. 2014. Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology, 36 (4): 922-926.
    Othman M A, Bencon C H. 1993. Effect of freeze-thaw on the hydraulic conductivity and morphology of compacted clay[J]. Canadian Geotechnical Journal, 30 (2): 236-246. doi: 10.1139/t93-020
    Qi X, Xu Q, Peng D L, et al. 2017. Mechanisms of gradual retreat of loess landslides caused by groundwater: a case study of the irrigation loess landslide in Heifangtai, Gansu Province[J]. Journal of Engineering Geology, 25 (1): 147-153.
    Wang G L, Ye W J, Wu F Q. 2013. Research on the stability evaluation method of avalanche-slip geologic hazards[M]. Shanghai: Shanghai Jiao Tong University Press.
    Wang N Q, Yao Y. 2008. Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions[J]. Journal of Disaster Prevention and Mitigation Engineering, 28 (2): 163-166.
    Wu W J. 1997. Slide accelerated by water entrapment due to seasonal freezing[J]. Journal of Glaciology and Geocryology, 19 (4): 71-77.
    Yang X L, He W S, Liu S K. 2022. Effect of freezing-thawing cycle on shear strength of undisturbed unsaturated loess and its microscopic interpretation[J]. Water Resources and Power, 40 (9): 194-197.
    Ye W. 2000. Comparison of textural features of loess and reworked loess in Yili Area, XinJiang[J]. Arid Land Geography, 23 (4): 310-314.
    Zeng L, Jia J. 2022. Instability mechanism and stability trend of loess slope during seasonal Freeze-thaw process[J]. Geological Bulletin of China, 41 (8): 1494-1503.
    Zhang M G, Wei Y J, Shao H, et al. 2018. Type and characteristics of loess landslides in Piliqing River, in Yili of Xinjiang Uygur Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 29 (1): 54-59.
    Zhang M S, Cheng X J, Dong Y, et al. 2013. The effect of frozen stagnant water and its impact on slope stability: A case study of Heifangtai, Gansu Province[J]. Geological Bulletin of China, 32 (6): 852-860.
    Zhou Y W. 1980. Permafrost China physical geography (geomorpho-logy)[M]. Beijing: Science Press.
    Zhu S N, Yin Y P, Wang L P, et al. 2019. Mechanism of freeze-thaw loess landslide in Yili River Valley, Xinjiang[J]. Acta Geoscientica Sinica, 40 (2): 339-349.
    蔡海艳. 2020. 伊宁县卡拉亚尕奇乡滑坡稳定性及治理措施浅析[J]. 地下水, 42 (2): 141-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202002050.htm
    曹小红, 吴彬, 尚彦军, 等. 2022. 季冻区冻融型黄土滑坡特征及成灾模式分析——以伊犁喀拉吐木苏克滑坡为例[J]. 新疆地质, 40 (4): 502-506. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202204005.htm
    程鹏, 杨军海, 张亚卿. 2017. 黄土地区季节性冻融触发滑坡的机理分析[J]. 中外公路, 37 (1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201701002.htm
    程秀娟, 张茂省, 朱立峰, 等. 2013. 季节性冻融作用及其对斜坡土体强度的影响——以甘肃永靖黑方台地区为例[J]. 地质通报, 32 (6): 904-909. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201306013.htm
    董晓宏, 张爱军, 连江波, 等. 2010. 长期冻融循环引起黄土强度劣化的试验研究[J]. 工程地质学报, 18 (6): 887-893. http://www.gcdz.org/article/id/8741
    高存海, 刘嘉麒. 1990. 乌鲁木齐河流域的黄土研究[J]. 第四纪研究, (3): 251-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199003006.htm
    胡列群, 武鹏飞, 梁凤超, 等. 2014. 新疆冬春季积雪及温度对冻土深度的影响分析[J]. 冰川冻土, 36 (1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201401006.htm
    胡再强, 刘寅, 李宏儒. 2014. 冻融循环作用对黄土强度影响的试验研究[J]. 水利学报, 45 (S2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htm
    靳德武, 牛富俊, 李宁. 2006. 青藏高原多年冻土区热融滑塌变形现场监测分析[J]. 工程地质学报, 14 (5): 677-682. http://www.gcdz.org/article/id/9061
    李广, 张明礼, 叶伟林, 等. 2021. 甘肃黑方台坡面冻融特征及冻结滞水效应分析[J]. 干旱区资源与环境, 35 (6): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202106017.htm
    倪万魁, 师华强. 2014. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 36 (4): 922-926. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201404020.htm
    亓星, 许强, 彭大雷, 等. 2017. 地下水诱发渐进后退式黄土滑坡成因机理研究——以甘肃黑方台灌溉型黄土滑坡为例[J]. 工程地质学报, 25 (1): 147-153. doi: 10.13544/j.cnki.jeg.2017.01.020
    王根龙, 叶万军, 伍法权. 2013. 崩滑地质灾害稳定性评价方法研究[M]. 上海: 上海交通大学出版社.
    王念秦, 姚勇. 2008. 季节冻土区冻融期黄土滑坡基本特征与机理[J]. 防灾减灾工程学报, 28 (2): 163-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200802009.htm
    吴玮江. 1997. 季节性冻结滞水促滑效应——滑坡发育的一种新因素[J]. 冰川冻土, 19 (4): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.011.htm
    杨喜莲, 何文社, 刘尚昆. 2022. 冻融循环对原状黄土抗剪强度的影响及微观解释[J]. 水电能源科学, 40 (9): 194-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202209046.htm
    叶玮. 2000. 新疆伊犁地区黄土与黄土状土粒度对比[J]. 干旱区地理, 23 (4): 310-314. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200004003.htm
    曾磊, 贾俊. 2022. 季节性冻融过程黄土斜坡失稳机制及稳定性趋势[J]. 地质通报, 41 (8): 1494-1503. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202208015.htm
    张茂省, 程秀娟, 董英, 等. 2013. 冻结滞水效应及其促滑机理——以甘肃黑方台地区为例[J]. 地质通报, 32 (6): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201306005.htm
    周幼吾. 1980. 多年冻土中国自然地理(地貌)[M]. 北京: 科学出版社.
    朱赛楠, 殷跃平, 王文沛, 等. 2019. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报, 40 (2): 339-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902010.htm
    庄茂国, 魏云杰, 邵海, 等. 2018. 新疆伊犁皮里青河黄土滑坡类型及其发育特征[J]. 中国地质灾害与防治学报, 29 (1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201801009.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  34
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-25
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回