尤路都斯盆地风吹雪成因特征及防治措施研究

廖昕 黄凯阳 李梦恒 宋殿君 巫锡勇 文洪 凌斯祥

廖昕, 黄凯阳, 李梦恒, 等. 2023. 尤路都斯盆地风吹雪成因特征及防治措施研究[J]. 工程地质学报, 31(4): 1450-1460. doi: 10.13544/j.cnki.jeg.2023-0224
引用本文: 廖昕, 黄凯阳, 李梦恒, 等. 2023. 尤路都斯盆地风吹雪成因特征及防治措施研究[J]. 工程地质学报, 31(4): 1450-1460. doi: 10.13544/j.cnki.jeg.2023-0224
Liao Xin, Huang Kaiyang, Li Mengheng, et al. 2023. Characteristics of snowdrift and prevention measures in Yultuz Basin[J]. Journal of Engineering Geology, 31(4): 1450-1460. doi: 10.13544/j.cnki.jeg.2023-0224
Citation: Liao Xin, Huang Kaiyang, Li Mengheng, et al. 2023. Characteristics of snowdrift and prevention measures in Yultuz Basin[J]. Journal of Engineering Geology, 31(4): 1450-1460. doi: 10.13544/j.cnki.jeg.2023-0224

尤路都斯盆地风吹雪成因特征及防治措施研究

doi: 10.13544/j.cnki.jeg.2023-0224
基金项目: 

四川省自然科学基金青年学者项目 2022NSFSC1117

中铁第一勘察设计院集团有限公司横向项目 2021-0122

西南交通大学地质工程与测绘工程创新实践基地 YJG-2022-JD04

详细信息
    通讯作者:

    廖昕(1986-),男,博士,副教授,硕士生导师,主要从事地质灾害及其防治工程教学科研工作. E-mail: xinliao@swjtu.edu.cn

  • 中图分类号: P694

CHARACTERISTICS OF SNOWDRIFT AND PREVENTION MEASURES IN YULTUZ BASIN

Funds: 

the Natural Science Foundation of Sichuan for Young Scholars 2022NSFSC1117

Project of China Railway First Survey and Design Institute Group Co.,Ltd. 2021-0122

Innovative Practice Bases of Geological Engineering and Surveying Engineering of Southwest Jiaotong University YJG-2022-JD04

  • 摘要: 风吹雪作为一种由气流挟带起分散的雪粒在近地面运行的二相流现象,在风的作用下发生迁移与重新沉积。风吹雪成灾是雪颗粒、大气流场、微地貌等因素多重作用的结果。拟建伊宁(伊)—阿克苏(阿)铁路穿越尤路都斯盆地,盆地冬春季气候寒冷,降雪量较大,地面常形成较厚的积雪,发育有风吹雪灾害,可对研究区内交通工程安全造成潜在威胁。本文以新疆天山地区尤路都斯盆地风吹雪为研究对象,通过现场气象监测、冬季雪害调查等方法对盆地内积雪与风吹雪特征进行研究。进而以受风吹雪影响较大的拟建铁路阿尔先段为例,系统分析该区段风吹雪成因特征及其工程防治措施。研究发现尤路都斯盆地风吹雪宏观孕灾背景主要是受西伯利亚寒流和蒙古高压的影响,冷空气使盆地产生强劲西北向大风。低温和较低的湿度使得积雪能够以较低密度的形式持续存在,进而在较低风速下启动形成风吹雪。通过拟建铁路阿尔先段典型路堑工程数值模拟研究,得出积雪平台宽度宜设置为5 m,下导风板与水平面夹角设为90°,下导风口高度设置为1.6 m,下导风板板高设置为5 m。研究成果可为寒区交通建设防灾减灾提供有益借鉴。
  • 图  1  研究区位置图

    Figure  1.  Location of the study area

    图  2  尤鲁都斯盆地积雪特征

    a. 积雪颗粒粒径; b. 积雪温度梯度; c. 积雪硬化形成的薄壳; d. 积雪剖面深霜层

    Figure  2.  Snow characteristics in the Yultuz Basin: (a)Snow particle size distribution; (b)Snow temperature gradient; (c)Thin crust formed by snow hardening; (d)Deep frost layer in the snow profile

    图  3  尤鲁都斯盆地风吹雪特征

    a. 巴音布鲁克风吹雪吹蚀作用; b. 阿拉斯台风吹雪雪檐塌落; c. 拉尔墩停车场风吹雪背风堆积掩埋道路; d. 火烧桥风吹雪屏障堆积

    Figure  3.  Characteristics of snowdrift in the Yultuz Basin:(a) snowdrift erosion in Bayinbrook; (b) snow cornice collapse in Alasitai; (c)road buried by leeward snowdrift in Laerdun; (d)snowdrift barrier in Huoshaoqiao

    图  4  阿尔先冬半年大于4 m·s-1风向玫瑰花图

    Figure  4.  Winter wind rose of Aerxian for wind speeds greater than 4 m·s-1

    图  5  DK284+965路堑设计断面图

    Figure  5.  Cross-sectional diagram of road cut DK284+965

    图  6  风吹雪路堑流场图

    Figure  6.  Flow field diagram of snowdrift in road cut

    图  7  不同高度流速图

    Figure  7.  Velocity distribution diagram at different heights

    图  8  积雪平台不同设置宽度流场图

    Figure  8.  Flow field diagram of snow accumulation platform with different width settings

    图  9  下导风板与水平面不同夹角下的流场分布

    Figure  9.  Flow field distribution of lower wind deflector at different angles with the horizontal plane

    图  10  下导风口不同高度下的流场分布

    Figure  10.  Flow field distribution of lower wind nozzle at different heights

    图  11  下导风板不同板高下的流场分布

    Figure  11.  Flow field distribution at different heights of lower wind deflector plate

    表  1  典型路堑断面数值模拟参数表

    Table  1.   Parameters of numerical model of road cut section

    参数名称 参数取值
    入口空气密度/kg·m-3 1.225
    实测新雪密度/kg·m-3 117
    雪粒径/mm 0.2
    动力黏度系数/kg·(m·s)-1 1.789×10-5
    雪相入口体积分数 2%
    地面粗糙度指数 0.15
    下载: 导出CSV
  • Benson C S, Sturm M. 1993. Structure and wind transport of seasonal snow on the Arctic slope of Alaska[J]. Annals of Glaciology, 18: 261-267. doi: 10.3189/S0260305500011629
    Ding L S, Bai M Z, Li P X. 2023. Correlation analysis of snow distribution characteristics and railway subgrade form under snowdrift conditions[J]. Journal of Beijing Jiaotong University, 47 (1): 54-64.
    Dong A X, Hu W C, Zhang Y, et al. 2014. Study of the relationship between gale and the peculiar terrain in the Hexi Corridor[J]. Journal of Glaciology and Geocryology, 36 (2): 347-351.
    Feng X Z. 2017. Remote sensing and application of snow cover in the Central Tianshan Mountains[M]. Beijing: Science Press.
    Gao P, Wei W S, Liu M Z, et al. 2010. Snow density and liquid water content within the seasonal snow cover in the Western Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 32 (4): 786-793.
    Gordon M, Taylor P A. 2009. Measurements of blowing snow, Part Ⅰ: particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada[J]. Cold Regions Science and Technology, 55 (1): 63-74. doi: 10.1016/j.coldregions.2008.05.001
    Gu Z W. 1989. Recent research on ice and snow in the Soviet Union[J]. Advances in Earth Science, (2): 28-31.
    Higashimura M. 2001. Promotion of snow and ice disaster prevention research[J]. Journal of Integrated Research, Tohoku Gakuin University: forum21, 1 : 27-43.
    Li G, Yu H X, Zhang J, et al. 2021. Multi-phase flow of wind blowing snow and its application in snow hydrology[J]. Acta Aerodynamica Sinica, 39 (3): 170-181.
    Li P X, Bai M Z, Ding L S, et al. 2022. Study on characteristics of snow-drifting in railway area based on indoor and outdoor wind tunnel tests[J]. Journal of Central South University(Natural Science Edition), 53 (8): 3245-3258.
    Liu H, Wang Y, Wang H G, et al. 2022. Experimental study on frost heaving pressure evolution of rock ice cracks under freezing of thawing cycles[J]. Journal of Engineering Geology, 30 (4): 1122-1131.
    Liu J, Yao X, Han Z, et al. 2008. Analysis of formation and type of snowdrift along the highway in Xinjiang Province[J]. Highway, (1): 25-27.
    Mahesh A, Eager R, Campbell J R, et al. 2003. Observations of blowing snow at the South Pole[J]. Journal of Geophysical Research: Atmospheres, 108 : 1-22.
    Mann G W, Anderson P S, Mobbs S D. 2000. Profile measurements of blowing snow at halley, Antarctica[J]. Journal of Geophysical Research: Atmospheres, 105 (D19): 24491-24508. doi: 10.1029/2000JD900247
    Matsuzawa K, Kaneko M. 2012. Current status and issues of blowing snow countermeasures on roads[J]. Journal of Wind Engineering, 37 (1): 10-16. doi: 10.5359/jawe.37.10
    Nishimura K, Yokoyama C, Ito Y, et al. 2014. Snow particle speeds in drifting snow[J]. Journal of Geophysical Research: Atmospheres, 119(16): 9901-9913. doi: 10.1002/2014JD021686
    Okaze T, Mochida A, Tominaga Y, et al. 2012. Wind tunnel investigation of drifting snow development in a boundry layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 104: 532-539.
    Qian W H, Zhang W W. 2007. Changes in cold wave events and warm winter in China during the last 46 years[J]. Chinese Journal of Atmospheric Sciences, 31 (6): 1266-1278.
    Shi J Y, Xu D Y, Xia C C, et al. 2020. Research on the distribution law of snow blockage of snow drift on road and the formation mechanism of snow disaster[J]. Highway, 65 (1): 257-264.
    Sturm M, Stuefer S. 2013. Wind-blown flux rates derived from drifts at arctic snow fences[J]. Journal of Glaciology, 59(213): 21-34. doi: 10.3189/2013JoG12J110
    Tabler R D. 2003. Controlling blowing and drifting snow with snow fences and road design[Z]. National Cooperative Highway Research Program Transportation Research Board, 102 : 24-37.
    Wang Z L, Bai Z Y, Chen Y. 1982. A study on the movement of snow drift in Tian Shan and its control[J]. Acta Geographica Sinica, 37 (1): 51-64.
    Wang Z Y, Ding Y H. 2006. Climate change of the cold wave frequency of China in the last 53 Years and the possible reasons[J]. Chinese Journal of Atmospheric Sciences, 30 (6): 1068-1076.
    Wei J B. 2022. Study on the snowdrift disaster influenced by w-beam barrier used in expressway[J]. Journal of Glaciology and Geocryology, 44 (6): 1887-1897.
    Wei W S, Qin D H, Liu M Z. 2001. Properties and structure of the seasonal snow cover in the northwest regions of China[J]. Arid Land Geography, 24 (4): 310-313.
    Wen H, Wang D, Wang S G, et al. 2021. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment, southeast Tibetan Plateau[J]. Journal of Engineering Geology, 29 (2): 404-415.
    Wu D Y, Ren Z K, Lü H H, et al. 2023. Geomorphic constraints on listric thrust faulting: implications for active deformation of Bayan anticline in Youludusi Basin, East Tianshan, China[J]. Earth Science, 48 (4): 1389-1404.
    Xu M B, Xie Q. 2015. Design of wind and snow protection at tunnel entrance[J]. Highway, 60 (7): 299-302.
    Xu Z X, Zhang L G, Jiang L W, et al. 2021. Engineering geological environment and main engineering geological problems of Ya'an—Linzhi Section of the Sichuan—Tibet Railway[J]. Advanced Engineering Sciences, 53 (3): 29-42.
    Yang L M, Yang T, Jia L H, et al. 2005. Analyses of the climate characteristics and water vapor of heavy snow in Xinjiang region[J]. Journal of Glaciology and Geocryology, 27 (3): 389-396.
    丁录胜, 白明洲, 李鹏翔. 2023. 风吹雪积雪分布特征和铁路路基形式相关性研究[J]. 北京交通大学学报, 47 (1): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202301007.htm
    東浦將夫. 2001. 雪氷防災研究の推進[J]. 東北公益文科大学総合研究論集: forum21, 1 : 27-43.
    董安祥, 胡文超, 张宇, 等. 2014. 河西走廊特殊地形与大风的关系探讨[J]. 冰川冻土, 36 (2): 347-351. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201402014.htm
    冯学智. 2017. 天山中部积雪遥感与应用[M]. 北京: 科学出版社.
    高培, 魏文寿, 刘明哲, 等. 2010. 天山西部季节性积雪密度及含水率的特性分析[J]. 冰川冻土, 32 (4): 786-793. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004020.htm
    顾钟炜. 1989. 近年来苏联的冰雪研究工作[J]. 地球科学进展, (2): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ198902006.htm
    李广, 于鸿翔, 张洁, 等. 2021. 风吹雪多相流运动及其在寒区雪水文中的应用[J]. 空气动力学学报, 39 (3): 170-181. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202103016.htm
    李鹏翔, 白明洲, 丁录胜, 等. 2022. 基于室内外风洞试验的铁路风吹雪特性研究[J]. 中南大学学报(自然科学版), 53 (8): 3245-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202208039.htm
    刘昊, 王宇, 王华建, 等. 2022. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 30 (4): 1122-1131. doi: 10.13544/j.cnki.jeg.2020-204
    刘健, 姚新豫, 韩志强, 等. 2008. 新疆公路风吹雪成因及类型分析[J]. 公路, (1): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200801010.htm
    钱维宏, 张玮玮. 2007. 我国近46年来的寒潮时空变化与冬季增暖[J]. 大气科学, 31 (6): 1266-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706022.htm
    施佳誉, 徐冬英, 夏才初, 等. 2020. 公路风吹雪雪阻分布规律及雪灾形成机理研究[J]. 公路, 65 (1): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001049.htm
    松澤勝, 金子学. 2012. 道路における吹雪対策の現状と課題[J]. 日本風工学会誌, 37 (1): 10-16.
    王中隆, 白重瑗, 陈元. 1982. 天山地区风雪流运动特征及其预防研究[J]. 地理学报, 37 (1): 51-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198201006.htm
    王遵娅, 丁一汇. 2006. 近53年中国寒潮的变化特征及其可能原因[J]. 大气科学, 30 (6): 1068-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606001.htm
    魏佳北. 2022. 高速公路波形梁护栏对风吹雪灾害的影响研究[J]. 冰川冻土, 44 (6): 1887-1897. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202206019.htm
    魏文寿, 秦大河, 刘明哲. 2001. 中国西北地区季节性积雪的性质与结构[J]. 干旱区地理, 24 (4): 310-313. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200104003.htm
    文洪, 王栋, 王生仁, 等. 2021. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究[J]. 工程地质学报, 29 (2): 404-415. doi: 10.13544/j.cnki.jeg.2021-0121
    武登云, 任治坤, 吕红华, 等. 2023. 铲式逆冲断层的地貌约束: 以东天山尤路都斯盆地巴音背斜构造为例[J]. 地球科学, 48 (4): 1389-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202304010.htm
    徐茂兵, 解琦. 2015. 隧道洞口防风雪设计[J]. 公路, 60 (7): 299-302. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201507066.htm
    徐正宣, 张利国, 蒋良文, 等. 2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题[J]. 工程科学与技术, 53 (3): 29-42.
    杨莲梅, 杨涛, 贾丽红, 等. 2005. 新疆大-暴雪气候特征及其水汽分析[J]. 冰川冻土, 27 (3): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200503010.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  44
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-23
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回