MODEL TEST OF SUPPORTING EFFECT OF RESILIENT ANCHOR CABLES ON SLOPE
-
摘要: 滑坡是世界上分布最广、危害最严重的地质灾害类型。降雨等因素作用下滑坡沿着滑动面发生剪切大变形,造成抗滑结构发生剪切破坏,然而目前抗滑结构设计未能充分考虑滑坡剪切大变形的静态、刚性设计,亟需开展滑坡-韧性锚固体系演化机理的深入研究。本文基于塑性变形理论提出了一种韧性锚固结构,建立了其力学模型,并以开挖后种蜂场滑坡为原型,设计了模型试验,对比分析了有无锚杆加固下边坡体变形、土压力等多源数据变化规律,结果发现:(1)韧性锚杆加固作用下边坡内测点侧向应力分布与曲线形态发生显著变化,边坡抗滑力增大了20%。(2)边坡剪切大变形过程中,韧性锚杆轴力呈周期性变化,与理论相符。(3)韧性锚杆明显减少了边坡位移及变形破坏范围,滑动范围减少了约25%。Abstract: Landslide is one of the most widespread and serious geological hazards in the world. Under the effect of rainfall and other factors,the landslide moves along the sliding zone,which causes the shear failure of reinforcement structures. However,the design of reinforcement structures has not been considered the dynamic evolution of the landslide and co-deformation between landslide and structures. So it is urgent to carry out the evolution mechanism of landslide with resilient anchor cables. Based on the theory of plastic deformation,a resilient anchor cables structure is proposed in this paper,and its mechanical model is established. The model test is designed by taking the Zhongfengchang landslide as the prototype. The axial force of the anchor cables,slope deformation and earth pressure are recorded during the deformation process. The results show that: (1)The soil pressure distribution and evolution of the reinforced model are completely different from the unreinforced model. Under reinforcement of resilient anchor cables,the resistance of the slope is increased by 20%. (2)In the model test,the axial force value of anchor cables changes periodically in the working stage,which is consistent with the theory. (3)Resilient anchor cable obviously decreased the displacement and deformation area of the slope.
-
Key words:
- Landslide /
- Large deformation /
- Ductile bolt /
- Support
-
表 1 韧性锚固结构参数
Table 1. Rock bolt structure parameters
锚固结构 总长度/m 锚固段长度/m 泊松比 弹性模量/GPa 原型 30 7.2 0.27 210 模型 0.5 0.12 0.27 3.5 表 2 边坡模型相似系数取值
Table 2. Value of similarity coefficient of slope model
几何相似比Cl 密度相似比Cρ 应力相似比Cσ 黏聚力相似比Cc 内摩擦角相似Cφ 60 1 60 60 1 表 3 边坡岩土体基本参数
Table 3. Parameters of rock and soil
密度ρ /g·m-3 黏聚力c /kPa 内摩擦角φ /(°) 原型 粉土层 1.87 26 22 卵石土层 2.23 4 40 模型 粉土层 1.87 0.43 22 卵石土层 2.23 0.07 40 表 4 相似材料参数
Table 4. Similar material parameters
密度ρ /g·m-3 黏聚力c /kPa 内摩擦角φ /(°) 粉土层 1.87 2.1 23 卵石土层 2.22 0.3 40 -
Chang X J,Wang D W,Tang Y Q. 2010. Simulation experiments of the rainfall-induced landslides in China insights and foresights[J]. Sedimentary Geology and Tethyan Geology,30 (1): 98-102. Chen C H. 2019. Research on a new type of geotechnical bolting in geotechnical engineering[J]. Theoretical Research in Urban Construction, (10): 72. Dai L P, Pan Y S, Wang A W. 2018. Study of the energy absorption performance of an axial splitting component for anchor bolts under static loading[J]. Tunnelling & Underground Space Technology, 81 : 176-186. Hao Y, Wu Y, Ranjith P G, et al. 2020. A novel energy-absorbing rock bolt with high constant working resistance and long elongation: Principle and static pull-out test[J]. Construction and Building Materials, 243(3): 118231. He M C, Gong W L, Wang J, et al. 2014. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance[J]. International Journal of Rock Mechanics and Mining Sciences, 67 : 29-42. doi: 10.1016/j.ijrmms.2014.01.007 He M C, Li C, Gong W L, et al. 2015. Elongation and impacting experimental system for bolts with constant resistance and large deformation and finite element analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (11): 2179-2187. He M C, Li C, Gong W L, et al. 2016. Support principles of NPR bolts/cables and control techniques of large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (8): 1513-1529. Hu H Q, Huang Y, Xiong M, et al. 2021. Investigation of seismic behavior of slope reinforced by anchored pile structures using shaking table tests[J]. Soil Dynamics and Earthquake Engineering, 150(4-6): 106900. Hu J, He M C, Li Z H, et al. 2020. Numerical study on NPR cable-rock interaction using 3D discrete-continuous coupling method[J]. Engineering Mechanics, 37 (7): 27-34. Li C C, Doucet C. 2012. Performance of D-bolts under dynamic loading[J]. Rock Mechanics & Rock Engineering, 45 (2): 193-204. Li C C. 2012. Performance of D-bolts under static loading[J]. Rock Mechanics and Rock Engineering, 45 (2): 183-192. doi: 10.1007/s00603-011-0198-6 Liu Y J, Wu J H. 2021. Application of geotechnical anchorage technology in slope treatment of geotechnical engineering[J]. Henan Science Technology, 40 (12): 100-102. Tao Z G, Ren S L, Wang F N, et al. 2020. Research on NPR anchor cable support scheme for large deformation of surrounding rock in high-ground stress soft rock tunnel[J]. Tunnel Construction, 40 (S2): 82-92. Tao Z G, Zhu C, He M C, et al. 2021. A physical modeling-based study on the control mechanisms of Negative Poisson's ratio anchor cable on the stratified toppling deformation of anti-inclined slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 138: 104632. doi: 10.1016/j.ijrmms.2021.104632 Wang G, Wu X Z, Jiang Y J, et al. 2013. Quasi-static laboratory testing of a new rock bolt for energy-absorbing applications[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 38 : 122-128. Ye S H, Zhao Z F, Zhu Y P. 2019. Large-scale shaking table experiment of loess slope supported by frame anchors[J]. Rock and Soil Mechanics, 40 (11): 4240-4248. Zhou C, Hu Y J, Ting X, et al. 2023. Analytical model for reinforcement effect and load transfer of pre-stressed anchor cable with bore deviation[J]. Construction and Building Materials, 379(5): 131219. Zhou C, Huang C, Chen Y D, et al. 2023. Performance of a novel resistant rock bolt with periodic energy absorption and release: theory and experiment[J]. Acta Geotechnica, doi: 10.1007/s11440-023-01943-7. Zhou C, Huang C, Chen Y D, et al. 2023. Development of a novel resilient anchor cable and its large shear deformation performance[J]. International Journal of Rock Mechanics and Mining Sciences, 163(6): 105293. 常晓军, 王德伟, 唐业旗. 2010. 中国滑坡降雨试验的研究现状与发展趋势[J]. 沉积与特提斯地质, 30 (1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201001018.htm 陈慈航. 2019. 岩土工程中的新型岩土锚杆术研究[J]. 城市建设理论研究(电子版), (10): 72. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201910070.htm 何满潮, 李晨, 宫伟力, 等. 2016. NPR锚杆/索支护原理及大变形控制技术[J]. 岩石力学与工程学报, 35 (8): 1513-1529. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608001.htm 何满潮, 李晨, 宫伟力. 2015. 恒阻大变形锚杆冲击拉伸实验及其有限元分析[J]. 岩石力学与工程学报, 34 (11): 2179-2187. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511002.htm 胡杰, 何满潮, 李兆华, 等. 2020. 基于三维离散-连续耦合方法的NPR锚索-围岩相互作用机理研究[J]. 工程力学, 37 (7): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202007006.htm 刘永军, 吴俊浩. 2021. 岩土锚固技术在岩土工程边坡治理中的应用[J]. 河南科技, 40 (12): 100-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKJ202112040.htm 陶志刚, 任树林, 王丰年, 等. 2020. 高地应力软岩隧道围岩大变形NPR锚索控制方法研究[J]. 隧道建设(中英文), 40 (S2): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2020S2011.htm 叶帅华, 赵壮福, 朱彦鹏. 2019. 框架锚杆支护黄土边坡大型振动台模型试验研究[J]. 岩土力学, 40 (11): 4240-4248. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911014.htm -