CHANGE OF MECHANICAL STRENGTH OF LOESS IN ILI REGION UNDER DIFFERENT FREEZE-THAW CYCLES AND MOISTURE CONTENTS
-
摘要: 新疆伊犁地区融雪季节和雨季黄土滑坡灾害频繁发生,亟需探究伊犁地区黄土在不同冻融循环次数和含水率条件下力学强度的变化特征,本文以伊犁地区新源县某天然黄土斜坡处的黄土作为研究对象,通过室内三轴压缩试验和扫描电子显微镜试验来探究伊犁地区黄土的宏微观特性变化。主要研究成果如下:(1)不同冻融循环次数条件下,室内三轴压缩试验过程中以轴向变形为主,变形破坏机制由挤压-横向拉裂型向弯曲-纵向拉裂型转变。试样黏聚力总体上先减小后增大然后稳定,而内摩擦角总体的变化趋势为先增大后减小。(2)含水率对黄土试样硬化-软化程度影响较大,随着含水率的增加,应变逐渐呈现出弱软化-弱硬化-一般硬化-弱软化的变化趋势。试样的黏聚力、内摩擦角随着含水率的增高均呈现先增大后减小的二次抛物线关系。(3)在不同冻融循环条件下,黄土微结构由粒状、镶嵌、面胶结-微胶结结构转变为凝块、分散、点接触-胶结结构;小颗粒通过凝结作用形成了大颗粒,颗粒形态变得复杂,接近等轴的颗粒在减少,排列变得无序,黄土颗粒不断裂解充填孔隙,凝聚扩大孔隙,孔隙形态趋近于简单。总体上伊犁地区黄土的微观颗粒结构经历了一个稳定-不稳定-稳定的过程。(4)随着含水率的增加,黄土微结构为粒状、镶嵌、面胶结-微胶结结构,伊犁地区黄土含水率存在一个特殊值——最优含水率,在其附近黄土大颗粒最多、接近等轴的颗粒最多、轮廓线最简单、颗粒排列最有序。本研究结果以期为伊犁地区黄土滑坡灾害的预测与防治提供理论依据并奠定基础。Abstract: The occurrence of frequent loess landslides during the snowmelt and rainy seasons in the Ili region of Xinjiang necessitates a thorough investigation into the mechanical strength variations of loess in the region under different freeze-thaw cycles and moisture contents. This study focuses on examining the macroscopic and microscopic characteristics of loess at a natural slope in Xinyuan County,Ili region. Through comprehensive laboratory triaxial compression tests and scanning electron microscopy experiments,the following key research findings are obtained:(1)Under different freeze-thaw cycle conditions,the triaxial compression tests reveal a predominant axial deformation process during which the deformation failure mechanism transitions from extrusion-lateral tensile cracking to bending-longitudinal tensile cracking. The cohesion of the samples generally exhibits an initial decrease,followed by an increase and subsequent stabilization,whereas the internal friction angle demonstrates an overall increasing-decreasing trend. (2)Moisture content significantly influences the degree of hardening-softening of the yellow loess samples. Increasing moisture content leads to a gradual transformation from weak softening to weak hardening,followed by general hardening,and finally,a return to weak softening. The cohesion and internal friction angle of the samples exhibit a quadratic relationship with moisture content,displaying an initial increase and subsequent decrease. (3)The microstructure of the loess undergoes a transformation from a granular,intercalated,and face-cemented to a micro-cemented structure under different freeze-thaw cycle conditions,evolving further into a blocky,dispersed,and point contact-cemented structure. The coalescence of smaller particles results in the formation of larger particles,leading to a complex particle morphology with reduced equiaxed particles and disordered arrangements. Continuous fracturing of the yellow loess particles contributes to pore filling,pore coalescence,and simplified pore morphology. Overall,the micro-particle structure of the loess in the Ili region experiences a stable-unstable-stable process. (4)With increasing moisture content,the microstructure of the yellow loess exhibits a transition from a granular,intercalated,and face-cemented to a micro-cemented structure. The optimal moisture content represents a critical point for the loess in the Ili region,characterized by the highest proportion of large particles,equiaxed particles,the simplest contour lines,and the most ordered particle arrangement. These research findings provide a robust theoretical foundation for the prediction and prevention of loess landslide disasters in the Ili region.
-
Key words:
- Freeze-thaw cycles /
- Water content /
- Loess /
- Mechanical strength /
- Damage characteristics /
- Ili
-
表 1 研究区黄土基本物理指标
Table 1. Basic physical indexes of loess in the study area
土样
来源密度
/g·cm-3天然含水率
/%塑限
/%液限
/%最大干密度
/g·cm-3最优含水率
/%新源县 1.67 26.64 17.34 27.09 1.86 17.40 表 2 黄土试样试验过程中破坏机制
Table 2. Failure mechanism of loess samples during the test process
样品 应力-应变关系曲线类型 变形类型及特征 破坏类型及特征 变形破坏机制 不同冻融循环次数 0 弱硬化型 弯曲变形为主,无明显裂隙产生 弹性-弹塑性破坏 剪胀与剪缩作用大致相当且剪缩作用稍大,为挤压-横向拉裂型变形破坏机制 15 一般硬化型 侧面鼓胀变形为主,无明显裂隙产生,并呈现渐进性破坏特点 弹性-弹塑性破坏 剪缩作用大于剪胀作用,为挤压-横向拉裂型变形破坏机制 30 强硬化型 以轴向变形为主,无裂隙产生 弹性-弹塑性破坏 剪缩作用大于剪胀作用,为挤压-横向拉裂型变形破坏机制 60 弱软化型 侧面鼓胀变形为主,出现了明显的破裂面 弹性-弹塑性-塑性破坏 剪胀与剪缩作用大致相当且剪胀作用稍大,为弯曲-纵向拉裂型变形破坏机制 不同含水率/% 15 弱软化型 轴向变形为主,沿裂隙发生剪切滑移,形成了明显的剪切面 弹性-弹塑性-塑性破坏 剪胀与剪缩作用大致相当且剪胀作用稍大,为弯曲-纵向拉裂变形破坏机制 17 弱硬化型 轴向变形为主,有裂隙产生但未形成剪切面 弹性-弹塑性-塑性破坏 剪胀与剪缩作用大致相当且剪缩作用稍大,为挤压-横向拉裂型变形破坏机制 19 弱软化型 以轴向变形为主,沿裂隙发生剪切滑移,有剪切面 弹性-弹塑性-塑性破坏 剪胀与剪缩作用大致相当且剪胀作用稍大,为弯曲-纵向拉裂变形破坏机制 表 3 硬化型应力-应变曲线类型分类标准
Table 3. Classification standard of hardening stress-strain curve type
硬化程度 强硬化 一般硬化 弱硬化 ρ <0.1 0.1~0.4 >0.4 表 4 软化型应力-应变曲线类型及分类标准
Table 4. Types and classification criteria of softening stress-strain curves
软化程度 强软化 一般软化 弱软化 |k| >1.0 0.1~1.0 <0.1 表 5 不同冻融循环次数条件下黄土应力-应变曲线硬化-软化程度分类结果
Table 5. Classification results of hardening-softening degree of loess stress-strain curve under different freeze-thaw cycles
试样 曲率|k| 硬化/软化程度 ω=17%,
σ3=100 kPaD=0 0.2026 一般硬化 D=5 0.6283 弱硬化 D=10 0.6133 弱硬化 D=20 0.6074 弱硬化 D=30 0.4496 弱硬化 D=45 0.3899 一般硬化 D=60 0.1661 一般硬化 ω=17%,
σ3=200 kPaD=0 0.5425 弱硬化 D=5 0.4326 弱硬化 D=10 0.4097 弱硬化 D=20 0.2848 一般硬化 D=30 0.4040 弱硬化 D=45 0.0113 弱软化 D=60 0.0361 弱软化 ω=17%,
σ3=300 kPaD=0 0.6370 弱硬化 D=5 0.4326 弱硬化 D=10 0.3491 一般硬化 D=20 0.2251 一般硬化 D=30 0.0996 强硬化 D=45 0.0445 弱软化 D=60 0.0089 弱软化 表 6 不同含水率条件下黄土应力-应变曲线硬化-软化程度分类结果
Table 6. Classification results of hardening-softening degree of loess stress-strain curve under different water content conditions
试样 类型 曲率|k| 硬化/软化程度 D=0,
σ3=100 kPaω=13% 软化型 0.0050 弱软化 ω=15% 软化型 0.0089 弱软化 ω=17% 硬化型 0.2026 一般硬化 ω=19% 硬化型 0.5347 弱硬化 ω=21% 软化型 0.0166 弱软化 D=0,
σ3=200 kPaω=13% 软化型 0.0174 弱软化 ω=15% 硬化型 0.4558 弱硬化 ω=17% 硬化型 0.5425 弱硬化 ω=19% 硬化型 0.5543 弱硬化 ω=21% 软化型 0.0144 弱软化 D=0,
σ3=300 kPaω=13% 软化型 0.0296 弱软化 ω=15% 硬化型 0.4533 弱硬化 ω=17% 硬化型 0.6370 弱硬化 ω=19% 软化型 0.0123 弱软化 ω=21% 软化型 0.0361 弱软化 表 7 不同冻融循环次数条件下黄土微观结构特征表
Table 7. Table of microstructure characteristics of loess under different freeze-thaw cycles
循环
次数主要颗
粒形态主要颗粒形态特征 主要颗粒
结构特征主要接
触关系主要联
接方式主要孔
隙类型主要胶
结类型主要微结构分类 0次 粉粒 椭圆形球状、似长柱状、
不规则状角砾型、镶嵌型 镶嵌接触 面胶结 粒间镶嵌孔隙 微胶结 粒状、镶嵌、面胶结-微胶结结构 5次 粉粒 椭圆形球状、不规则状 角砾型、镶嵌型 支架接触 点接触 粒间架空孔隙 微胶结 粒状、支架、点接触-微胶结结构 10次 粉粒 椭圆形球状、不规则状 角砾型、附着型 支架接触 点接触 粒间架空孔隙 半胶结 粒状、支架、点接触-半胶结结构 20次 粉粒 似圆状、椭圆形球状、
不规则状基底型、附着型 分散接触 点接触 粒间架空孔隙 半胶结 粒状、分散、点接触-半胶结结构 30次 凝块 椭圆形球状、不规则状 基底型、附着型 分散接触 点接触 粒内胶结物孔隙 半胶结 凝块、分散、点接触-半胶结结构 45次 凝块 圆球状、不规则状 基底型、附着型 分散接触 点接触 粒内胶结物孔隙 胶结 凝块、分散、点接触-胶结结构 60次 凝块 圆球状、不规则状 基底型、附着型 分散接触 点接触 粒内胶结物孔隙 胶结 凝块、分散、点接触-胶结结构 表 8 不同含水率条件下黄土微观结构特征
Table 8. Microstructure characteristics of loess with different water content
含水率 颗粒
形态颗粒形态特征 颗粒结构特征 接触关系 联接
方式孔隙类型 胶结
类型微结构分类 13% 粉粒 椭圆形球状、不规则状 角砾型、镶嵌型 镶嵌接触 面胶结 粒间镶嵌孔隙 微胶结 粒状、镶嵌、面胶结-微胶结结构 15% 粉粒 似圆状、不规则状 角砾型、镶嵌型 镶嵌接触 面胶结 粒间镶嵌孔隙 微胶结 粒状、镶嵌、面胶结-微胶结结构 17% 粉粒 圆球状、似长柱状、
不规则状角砾型、镶嵌型 镶嵌接触 面胶结 粒间镶嵌孔隙 微胶结 粒状、镶嵌、面胶结-微胶结结构 19% 集粒 似圆形球状、规则状 角砾型、镶嵌型 镶嵌接触 面胶结 粒间镶嵌孔隙 半胶结 粒状、镶嵌、面胶结-半胶结结构 21% 凝块 椭圆形球状、规则状 角砾型、镶嵌型 镶嵌接触 面胶结 粒间镶嵌孔隙 胶结 凝块、镶嵌、面胶结-胶结结构 -
An P,Xing Y C,Zhang A J,et al. 2016. Research on evaluation of self-weight collapsibility for large-thickness collapsible loess using centrifugal model test[J]. Journal of Sichuan University(Engineering Science Edition),48 (6):23-30. An R, Kong L W, Li C S, et al. 2020. Strength attenuation and microstructure damage of granite residual soils under hot and rainy weather[J]. Chinese Journal of Rock Mechanics and Engineering, 39 (9): 1902-1911. Cao X H, Wu B, Shang Y J, et al. 2022. Analysis of characteristics and disaster model seasonal freeze-thaw loess landslides——Taking Yili kalatumusuke landslide as an example[J]. Xinjiang Geology, 40 (4): 502-506. Chen G X, Fan L L, Chen S, et al. 2006. Soil geology and soil mecha-nics[M]. 2nd ed. Beijing: China Water Resources and Hydropower Publishing House. Chen Y, Li X A, Huang R Q, et al. 2015. Micro experimental research on influence factors of loess collapsibility[J]. Journal of Engineering Geology, 23 (4): 646-653. Chinese Society of Rock Mechanics and Engineering, et al. 2013. Proceedings of the fourth national geotechnical and engineering academic conference[C]. Beijing: China Water Resources and Hydropower Press. Fu X Y, Zhang Z, Yang C S, et al. 2021. Study on geometric type changes of Fuping loess microstructure under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 43 (2): 484-496. Gao G R. 1980. Classification of microstructure and collapsibility of loess[J]. Scientia Sinica(Mathematica), (12): 1203-1208, 1237-1240. Gao Y, Yu Y T, Zheng J G, et al. 2019. Strength characteristics of compacted loess during leaching[J]. Rock and Soil Mechanics, 40 (10): 3833-3843. Guo Y X. 2021. Investigation of the microstructure effect on the permeability and mechanical property of compacted loess[D]. Xi'an: Chang'an University. Han Y. 2021. Hydro-physical characteristics and rainfall-induced erosion-concomitant slope failure of unsaturated dispersive soil from Qian'an[D]. Changchun: Jilin University. Huang R Q. 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (3): 433-454, 20-23. Jin J. 2021. Research on permeability mechanism and slope stability of unsaturated loess under dry-wet cycle conditions[D]. Lanzhou: Lanzhou Jiaotong University. Kong J X, Zhuang J Q, Peng J B, et al. 2021. Spatial and temporal distribution characteristics and risk simulation of loess micro geomorphic disaster chain in Laolang Gully, Lanzhou[J]. Journal of Engineering Geology, 29 (5): 1401-1415. Li J H. 2018. Experimental study on microstructure and reinforcement characteristics of newly reclaimed soil[D]. Hangzhou: Zhejiang University. Li P, Vanapalli S, Li T. 2016. Review of collapse triggering mechanism of collapsible soils due to wetting[J]. Journal of Rock Mechanics and Geotechnical Engineering, 8 (2): 256-274. doi: 10.1016/j.jrmge.2015.12.002 Li X, Li L, Song Y, et al. 2019. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China-A study from a micro perspective[J]. Engineering Geology, 249: 77-88. doi: 10.1016/j.enggeo.2018.12.024 Liang Z C, Zhang A J, Ren W X, et al. 2023. Rheological properties of the high soluble salt content Ili loess with different water contents[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 39 (5): 90-99. Lü Q L. 2020. A prevention and control structure of landslide caused by enhanced freeze-thaw action: China, 22871684.6[P]. 2020-12-02. Mu Z X. 2010. Research on vertical distribution law of precipitation and snowmelt runoff simulation in high cold alpine areas[D]. Urumqi: Xinjiang Agricultural University. Qi J L, Cheng G D, Vermeer P A. 2005. State-of-the-art of influence of freeze-thaw on engineering properties of soils[J]. Advances in Earth Science, 20 (8): 887-894. Qi J L, Ma W. 2010. State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 31 (1): 133-143. Qiao G W. 2019. Study on the mechanism of the freeze-thaw slope and rock mass quality evaluation system in Tianshan Mountain area[D]. Chengdu: Chengdu University of Technology. Qu Y, Ni W, Niu F, et al. 2020. Mechanical and electrical properties of coarse-grained soil affected by cyclic freeze-thaw in high cold regions[J]. Journal of Central South University, 27 (3): 853-866. doi: 10.1007/s11771-020-4336-8 Shi Y G. 2008. A study on the spatial-temporal distributions of areal precipitation and water vapor over Xinjiang[D]. Nanjing: Nanjing University of Information Science & Technology. Sun Y L, Tang L S, Liu J. 2020. Advances in research on microstructure and intergranular suction of unsaturated soils[J]. Rock and Soil Mechanics, 41 (4): 1095-1122. Wang D W, Lu W P, Tangn C S, et al. 2019. Sample preparation technique and microstructure quantification method for sandy soil[J]. Rock and Soil Mechanics, 40 (12): 4783-4792. Wang J D, Zhang Z Y. 1999. System engineering study of the typical high-speed loess landslide group[M]. Chengdu: Sichuan Science and Technology Press. Wang K K. 2021. Stability mechanism of Yili loess slope under multiple freeze-thaw cycles[D]. Urumqi: Xinjiang University. Wang L X. 2021. Study on the characteristics and damages mechanism of dispersive soil in seasonal frozen area[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. Wang L. 2021. Research on prediction model of loess collapsibility based on microstructure unit theory[D]. Xi'an: Chang'an University. Wang Y Y. 1982. Loess and Quaternary geology[M]. Xi'an: Shaanxi People's Publishing House. Wu X Y, Liang Q G, Niu F J, et al. 2017. Study on hardened and softened classification in shear test[J]. Chinese Journal of Underground Space and Engineering, 13 (6): 1457-1466. Xie D Y. 2001. Exploration of some new tendencies in research of loess soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 23 (1): 3-13. Xu J, Ren J, Wang Z, et al. 2018. Strength behaviors and meso-structural characters of loess after freeze-thaw[J]. Cold Regions Science and Technology, 148: 104-120. doi: 10.1016/j.coldregions.2018.01.011 Yan C, Zhang Z, Jing Y. 2017. Characteristics of strength and pore distribution of lime-flyash loess under freeze-thaw cycles and dry-wet cycles[J]. Arabian Journian of Geosciences, 10: 544. doi: 10.1007/s12517-017-3313-5 Yang F G, Zari M, Feng L H. 2005. Formation of geological hazards in Yili area and measures for controls and prevention[J]. Journal of Xinjiang Normal University(Natural Sciences Edition), 24 (3): 117-120. Zhai Q X, Huang H J, Liu D, et al. 2012. Analysis the theory and application of SEM and EDS analytical method[J]. Printed Cicuit Information, (5): 66-70, 6. Zhang K, Li M Z, Yang B B, et al. 2016. Research on effect of water content and dry density on shear strength of remolded loess[J]. Journal of Anhui University of Science and Technology(Natural Science), 36 (3): 74-79. Zhang W Z. 2021. Study on mechanical characteristics and microscopic-mechanism of loess under water and salt action[D]. Xi'an: Chang'an University. Zhang Z K. 2003. China loess[M]. ShiJiazhuang: Hebei Education Press. Zheng Z W. 2017. Spatial variation of hydraulic conductivities of Yili-Kunes River streambed sediments and the transformation relationship between river and groundwater[D]. Xi'an: Chang'an University. Zhong L X. 2006. Geological disasters caused by heavy rain in 2003~2005 in Yili Prefecture, Xinjiang Province[J]. The Chinese Journal of Geological Hazard and Control, (2): 179-180. Zhu S N, Yin Y P, Wang W P, et al. 2019. Mechanism of freeze-thaw loess landslide in Yili River Valley, Xinjiang[J]. Acta Geoscientica Sinica, 40 (2): 339-349. 安鹏, 邢义川, 张爱军, 等. 2016. 基于离心模型试验的深厚湿陷性黄土自重湿陷性评价研究[J]. 四川大学学报(工程科学版), 48 (6): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201606004.htm 安然, 孔令伟, 黎澄生, 等. 2020. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报, 39 (9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm 曹小红, 吴彬, 尚彦军, 等. 2022. 季冻区冻融型黄土滑坡特征及成灾模式分析——以伊犁喀拉吐木苏克滑坡为例[J]. 新疆地质, 40 (4): 502-506. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202204005.htm 陈国兴, 樊良本, 陈甦, 等. 2006. 土质学与土力学[M]. 2版. 北京: 中国水利水电出版社. 陈阳, 李喜安, 黄润秋, 等. 2015. 影响黄土湿陷性因素的微观试验研究[J]. 工程地质学报, 23 (4): 646-653. doi: 10.13544/j.cnki.jeg.2015.04.009 翟青霞, 黄海蛟, 刘东, 等. 2012. 解析SEM & EDS分析原理及应用[J]. 印制电路信息, (5): 66-70, 6. 付翔宇, 张泽, 杨成松, 等. 2021. 冻融循环作用下富平黄土微观结构几何类型变化研究[J]. 冰川冻土, 43 (2): 484-496. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202102014.htm 高国瑞. 1980. 黄土显微结构分类与湿陷性[J]. 中国科学, (12): 1203-1208, 1237-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198012008.htm 高远, 于永堂, 郑建国, 等. 2019. 压实黄土在溶滤作用下的强度特性[J]. 岩土力学, 40 (10): 3833-3843. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910018.htm 郭叶霞. 2021. 压实黄土渗透性与力学特性的微结构效应研究[D]. 西安: 长安大学. 韩岩. 2021. 乾安非饱和分散性土水理特性及边坡水蚀灾变过程研究[D]. 长春: 吉林大学. 黄润秋. 2007.20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26 (3): 433-454, 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm 景静. 2021. 干湿循环条件下非饱和黄土渗透机理及边坡稳定性研究[D]. 兰州: 兰州交通大学. 孔嘉旭, 庄建琦, 彭建兵, 等. 2021. 兰州老狼沟黄土微地貌灾害链时空分布特征与危险性模拟研究[J]. 工程地质学报, 29 (5): 1401-1415. doi: 10.13544/j.cnki.jeg.2021-0435 李俊虎. 2018. 新近吹填土微观结构及加固特性试验研究[D]. 杭州: 浙江大学. 梁志超, 张爱军, 任文渊, 等. 2023. 不同含水率高易溶盐含量的伊犁黄土流变特性[J]. 农业工程学报, 39 (5): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202305011.htm 吕倩俐. 2020. 一种增强冻融作用引起的滑坡的防治结构: 中国, 22871684.6[P]. 2020-12-02. 穆振侠. 2010. 高寒山区降水垂直分布规律及融雪径流模拟研究[D]. 乌鲁木齐: 新疆农业大学. 齐吉琳, 程国栋, Vermeer P A. 2005. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展, 20 (8): 887-894. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200508009.htm 齐吉琳, 马巍. 2010. 冻土的力学性质及研究现状[J]. 岩土力学, 31 (1): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001026.htm 乔国文. 2019. 天山山区边坡冻融成灾机理及岩体质量评价体系研究[D]. 成都: 成都理工大学. 史玉光. 2008. 新疆区域面雨量及空中水汽时空分布规律研究[D]. 南京: 南京信息工程大学. 孙银磊, 汤连生, 刘洁. 2020. 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 41 (4): 1095-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004001.htm 汪凯凯. 2021. 多次冻融循环下伊犁黄土斜坡稳定性机制[D]. 乌鲁木齐: 新疆大学. 王东伟, 陆武萍, 唐朝生, 等. 2019. 砂土微观结构样品制备技术及量化方法研究[J]. 岩土力学, 40 (12): 4783-4792. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912027.htm 王家鼎, 张倬元. 1999. 典型高速黄土滑坡群的系统工程研究[M]. 成都: 四川科学技术出版社. 王理想. 2021. 季冻区分散性土特性与破坏机理研究[D]. 哈尔滨: 中国地震局工程力学研究所. 王力. 2021. 基于微结构单元理论的黄土湿陷性预测模型研究[D]. 西安: 长安大学. 王永焱. 1982. 黄土与第四纪地质[M]. 西安: 陕西人民出版社. 吴旭阳, 梁庆国, 牛富俊, 等. 2017. 黄土剪切应变硬化-软化分类试验研究[J]. 地下空间与工程学报, 13 (6): 1457-1466. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201706004.htm 谢定义. 2001. 试论我国黄土力学研究中的若干新趋向[J]. 岩土工程学报, 23 (1): 3-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200101001.htm 杨奉广, 木合塔尔·扎日, 封丽华. 2005. 新疆伊犁地区地质灾害的形成与防治对策[J]. 新疆师范大学学报(自然科学版), 24 (3): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200503035.htm 张奎, 李梦姿, 杨贝贝, 等. 2016. 含水率和干密度对重塑黄土抗剪强度的影响[J]. 安徽理工大学学报(自然科学版), 36 (3): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201603015.htm 张文哲. 2021. 水-盐作用下黄土力学特征及微观机理研究[D]. 西安: 长安大学. 张宗祜. 2003. 中国黄土[M]. 石家庄: 河北教育出版社. 郑紫文. 2017. 新疆伊犁-巩乃斯河河床沉积物渗透系数空间变异性及河水与地下水转化关系[D]. 西安: 长安大学. 中国岩石力学与工程学会. 2013. 第四届全国岩土与工程学术大会论文集[C]. 北京: 中国水利水电出版社. 钟立勋. 2006. 新疆伊犁州地区2003~2005年暴雨引发的地质灾害[J]. 中国地质灾害与防治学报, (2): 179-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200602043.htm 朱赛楠, 殷跃平, 王文沛, 等. 2019. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报, 40 (2): 339-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201902010.htm -