空地一体化的地质碳封存泄露风险监测方法

杨慧 范怀伟 王文峰 张云惠 鞠玮 秦勇

杨慧, 范怀伟, 王文峰, 等. 2023. 空地一体化的地质碳封存泄露风险监测方法[J]. 工程地质学报, 31(4): 1461-1473. doi: 10.13544/j.cnki.jeg.2023-0242
引用本文: 杨慧, 范怀伟, 王文峰, 等. 2023. 空地一体化的地质碳封存泄露风险监测方法[J]. 工程地质学报, 31(4): 1461-1473. doi: 10.13544/j.cnki.jeg.2023-0242
Yang Hui, Fan Huaiwei, Wang Wenfeng, et al. 2023. Air-ground integrated monitoring method of leakage risk during geological carbon squestration[J]. Journal of Engineering Geology, 31(4): 1461-1473. doi: 10.13544/j.cnki.jeg.2023-0242
Citation: Yang Hui, Fan Huaiwei, Wang Wenfeng, et al. 2023. Air-ground integrated monitoring method of leakage risk during geological carbon squestration[J]. Journal of Engineering Geology, 31(4): 1461-1473. doi: 10.13544/j.cnki.jeg.2023-0242

空地一体化的地质碳封存泄露风险监测方法

doi: 10.13544/j.cnki.jeg.2023-0242
基金项目: 

新疆维吾尔自治区重点研发任务专项 2022B01012-1

第三次新疆综合科学考察项目 2022xjkk1006

国家自然科学基金面上项目 41971335

详细信息
    作者简介:

    杨慧(1983-),女,博士,教授,博士生导师,主要从事地球信息科学与技术方面的科研与教学工作. E-mail: yanghui@cumt.edu.cn

    通讯作者:

    秦勇(1957-),男,博士,教授,博士生导师,主要从事煤层气地质方面的科研与教学工作. E-mail: yongqin@cumt.edu.cn

  • 中图分类号: X701

AIR-GROUND INTEGRATED MONITORING METHOD OF LEAKAGE RISK DURING GEOLOGICAL CARBON SEQUESTRATION

Funds: 

the Xinjiang Uygur Autonomous Region Key Research and Development Program 2022B01012-1

the Third Xinjiang Scientific Expedition Program 2022xjkk1006

the National Natural Science Foundation of China 41971335

  • 摘要: 为了有效验证和评估地质碳封存的持久性和安全性,本文设计空地一体化的地质碳封存区域泄露风险监测方法,并对封存区域的大气CO2浓度时空变化进行了分析。以地质资料、CO2地面站点数据、OCO-2卫星等数据为研究基础,以新疆维吾尔自治区准噶尔盆地油田碳封存区为研究区域,构建了空地一体化的地质碳封存泄露风险监测方案,设计了“特征提取-特征嵌入-距离度量-特征解码”的空地监测数据融合方法,设计可变密度的地表监测传感节点优化部署网络算法,或密集或稀疏地布设监测节点有效提高监测的准确性,处理OCO-2碳卫星数据分析封存区域大气CO2自然背景浓度波动本底,基于局部近似回归法逐步逼近回归拟合并分离地表监测时序数据,实现全生命周期长期而持续的地表监测CO2局域特征及浓度梯度场分布对比分析。结果表明,空地一体化的地质碳封存泄露地表监测方法,能有效优化CO2地质封存区的传感监测节点部署,通过融合碳卫星观测数据实现地质碳封存泄露扩散场景的长期监测并追踪,为封存泄露过程的精准监测和预警提供科学数据基础,为落实地质负碳创新技术成效和有关政策制定提供重要数据支撑。
  • 图  1  准噶尔盆地地形图

    Figure  1.  Topographic map of the Junggar Basin

    图  2  空地一体化监测方案

    Figure  2.  Integrated Air-Ground monitoring scheme

    图  3  封存区域“地表-卫星”监测数据融合方法

    Figure  3.  Surface-satellite monitoring data fusion method for GCS

    图  4  地质碳封存地表监测仪器

    Figure  4.  GCS surface monitoring instrument

    图  5  层次型的网络分簇拓扑结构

    Figure  5.  Hierarchical network clustering topology

    图  6  可变密度的地表监测网络优化算法流程图

    Figure  6.  Flow chart of variable density network optimization coverage algorithm

    图  7  CO2地质封存地面监测网络部署三维场景

    Figure  7.  Three-dimensional scene of deployment of ground monitoring network for GCS

    图  8  地表监测时序数据分析流程

    Figure  8.  Analysis process of surface monitoring time series data

    图  9  地表监测时序数据分析结果

    Figure  9.  Analysis results of surface monitoring time series data

    图  10  2015~2021年新疆维吾尔自治区月均CO2浓度

    Figure  10.  Monthly average CO2 concentration in Xinjiang Uygur Autonomous Region from 2015 to 2021

    图  11  2015~2021年新疆维吾尔自治区CO2月均浓度空间分布

    Figure  11.  Spatial distribution of monthly average CO2 concentration in Xinjiang Uygur Autonomous Region from 2015 to 2021

    图  12  自治区准噶尔盆地断裂带年均CO2浓度分布

    Figure  12.  Average annual CO2 concentration distribution in the Junggar Basin fault zone, Xinjiang

    图  13  断裂5号数据点处2015~2021年月均CO2浓度变化

    Figure  13.  Monthly average CO2 concentration changes at data point 5 from 2015 to 2021

    图  14  碳封存监测实验点年均CO2浓度分布

    Figure  14.  Average annual CO2 concentration distribution at carbon sequestration monitoring experimental sites

    图  15  碳封存监测实验区域月均CO2浓度变化

    Figure  15.  Monthly average CO2 concentration changes in the carbon sequestration experimental area

    表  1  全球已发射的碳监测卫星信息汇总

    Table  1.   Summary of GHG monitoring satellites(Launched, or to belaunched before 2028)

    发射时间/年 卫星或载荷 国家/地区 轨道/km 精度 幅宽/km 空间分辨率
    CO2/×10-6 CH4/×10-9
    2002 SCIAMACHY 欧盟 772 16 960 32×60 km2
    2009 GOSAT 日本 666 <4 34 640 φ10.5 km
    2014 OCO-2 美国 705 1 10.6 1.29×2.25 km2
    2016 TanSat 中国 700 1~4 20 1×2 km2
    2016 GHGSat-D 加拿大 520 4 <50 m
    2017 Sentinel-5P 欧盟 824 5.6 2600 7×5.5 km2
    2017 FY-3D 中国 836.4 1~4 φ10 km
    2018 GF-5 中国 708 1~4 800 φ10.5 km
    2018 GOSAT-2 日本 613 1 5 632 φ9.7 km
    2019 OCO-3 美国 394 1 16 4 km2
    2021 GHGSat-C2 加拿大 530 18 25 m
    2021 GF5-02 中国 <700 1~4 20 60 30 m
    2022 Microcarb 法国 650 0.5~1 13.5 2×2 km2
    2022 MethaneSAT 美国 N.A 2 260 100×400 m2
    2023 FengYun-3G 中国 N.A N.A N.A N.A N.A
    2022 GEOCARB 美国 35400 1.2 10 3000 3×6 km2
    2022 DQ-01 中国 705 N.A N.A N.A N.A
    2023 Carbon
    Mapper
    美国 400 N.A N.A 18 30 m
    2023 DQ-02 中国 705 N.A >100 3 km
    下载: 导出CSV
  • Benson S M. 2005. Results from the CO2 capture project, v. 2: geologic storage of CO2 with monitoring and verification[R]. London: Elsevier Science: 1031-1044.
    Bi J A, Xu P H, Song S Y, et al. 2022. Assessment of the susceptibility to geological hazards in the Manas River Basin based on the coupled information value-logistic regression model[J]. Journal of Engineering Geology, 30 (5): 1549-1560.
    Chen F, Yang B D, Ma J, et al. 2016. Effects of CO2 geological storage leakage on soil microbial community[J]. Journal of China University of Mining & Technology, 45 (6): 1285-1293, 1299.
    Chen R, Qin Y, Shen J, et al. 2008. Study on multi-application of CO2 injection into coal bed[J]. Coal Geology & Exploration, 36 (6): 20-23.
    Damen K, Faaij A, Van B F, et al. 2005. Identification of early opportunities for CO2 sequestration—worldwide screening for CO2-EOR and CO2-ECBM projects[J]. Energy, 30 (10): 1931-1952. doi: 10.1016/j.energy.2004.10.002
    Dave W. Expert Review of The Intergovernmental Panel on Climate Change(IPCC)2019 Special Report Global Warming of 1.5 ℃[EB/OL]. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter2_Low_Res.pdf, 2019.
    Duan Z H, Sun S, Zhang C, et al. 2004. Reducing the release of CO2 into atmosphere: CO2 sequestration[J]. Geological Review, 50 (5): 514-519.
    Fu H Y. 2020. Spatial-temporal reconstruction and analysis of dynamic driving factors for land surface temperatures in urban area[D]. Wuhan: Wuhan University.
    Griggs D J, Noguer M. 2001. The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change[J]. Weather, 57(8): 267-269.
    Gong G, Li Y, Tang D, et al. 2023. Research on optimization of CO2 injection schems under THM couplings in CO2 geological storage[J]. Journal of Engineering Geology, 31 (3): 1084-1096.
    Guo X D. 2014. Optimization algorithm for Delaunay triangulation point insertion method[J]. Meteorological and Environmental Sciences, 37 (2): 112-116.
    Kay D, Andre F, Frank V B, et al. 2005. Identification of early opportunities for CO2 sequestration worldwide screening for CO2-EOR and CO2-ECBM projects[J]. Energy, 30 (10): 1931-1952. doi: 10.1016/j.energy.2004.10.002
    Li K Q, Li P, Wei M Z, et al. 2021. A pilot project of CO2 enhanced oil recovery and storage in Chang 8 extra-low permeability reservoir in Huang 3 district of Changqing oilfield[J]. Journal of Engineering Geology, 29 (5): 1488-1496.
    Li P C, Zhou D, Liang X, et al. 2018. Construction method of GIS-based offshore oilfield CO2-EOR-S database[J]. Geospatial Information, 16 (11): 50-54, 59, 11.
    Li X C, Fang Z M, Wei N, et al. 2009. Technology route of CO2 capture and sequestration in China[J]. Rock and Soil Mechanics, 30 (9): 2674-3678.
    Li Y, Zhang K N, Wang X Y. 2014. Assessment of the impact on shallow groundwater system by leakage of CO2 geological storage[J]. Geotechnical Investigation & Surveying, (11): 44-50.
    Liu L C, Cao D, Wang J N. 2010. Environmental impacts of carbon capture and storage technology and some suggestions[J]. Advances in Climate Change Research, 6 (4): 290-295.
    Liu T, Ma X, Diao Y J, et al. 2021. Research status of CO2 geological storage potential evaluation methods at home and abroad[J]. Geological Survey of China, 8 (4): 101-108.
    Liu Y H, Fang R K, Su Y C, et al. 2021. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 29 (1): 116-124.
    Liu Y J. 2001. Polymer and carbon dioxide flooding technology[M]. Beijing: Sinopec Press.
    Liu Y Z, Wang L, Zhang J L. 2012. Prediction on leakage and rate characteristics of CO2 storage[J]. CIESC Journal, 63 (4): 1226-1232.
    Liu Y, Cao J, Zhu S B. 2010. Challenging climate change: carbon dioxide capture and storage[J]. Frontier Science, 4 (13): 40-51.
    Ministry of Ecology and Environment of the People's Republic of China. Guidance on coordinating and strengthening work related to climate change and ecological environment protection[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202101/t20210113_817221.html, 2021.
    NOAA(National Oceanic and Atmospheric Administration). CO2 Publication Data[EB/OL]. [2010.2]. ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt.
    Qin B X, Zeng J J. 2023. Development status of global greenhouse gas remote sensing satellites industry[J/OL]. China Environmental Science, 2023-06-27, doi: 10.19674/j.cnki.issn1000-6923.20230626.004.
    Qing D A, Q T, Gao S B, et al. 2022. An NDIR sensor for carbon emission monitoring: China, CN202122355400.2[P]. 2022-04-12.
    Report of the Twentieth Session of the International Panel on Climate Change[R]. France: Paris: 2003.
    Sang S X, Qin Y. 2001. Geological characteristics of coalbed methane in continental basins: A case study of Jungaar and Turpan-Hami Basins. China University of Mining and Technology Press.
    Sang S X, Yuan L, Liu S Q, et al. 2022. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 47 (4): 1430-1451.
    Schreurs H C E. 2002. Feasibility for enhanced coalbed methane in the Netherlands-potential and economic evaluation[C]. Proceedings of the Third International CBM/CMM Symposium in China. Xuzhou: China University of Mining and Technology Press: 79-87.
    Sun J F, Ma C, Hu J S, et al. 2023. Susceptibility evaluation of geological hazard by coupling grey relational degree and analytic hierarchy process: A case of Chongtou Town, Yunhe County, Zhejiang Province[J]. Journal of Engineering Geology, 31 (2): 538-551.
    Tang Q, Niu Z. 2007a. Improved algorithm for constructing Delaunay triangulation[J]. Journal of Computer Applications, 27 (S1): 158-159.
    Tang Q, Niu Z. 2007b. Build a Delaunay triangulation algorithm[J]. Computer application, (S): 158-159.
    The Atmosphere: Getting a Handle on Carbon Dioxide[EB/OL]. https://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/.
    Tsai V J D. 1993. Delaunay triangulations in TIN creation: an overview and a linear-time algorithm[J]. International Journal of Geographical Information Science, 7 (6): 501-524.
    Wang S M, Shen Y J, Sun Q, et al. 2022. Underground CO2 storage and technical problems in coal mining area under the"dual carbon" target[J]. Journal of China Coal Society, 47 (1): 45-60.
    Wang W J, Qian C, Zhang Y, et al. 2022. Multi-time scale features of fire weather in two major forests in China during 1961-2020[J]. Climatic and Environmental Research, 27 (5): 559-577.
    Wang Y S. 2018. Research of the environmental risk assessment of CO2 capture and aquifer geologic storage project in China Shenhua coal to oil[J]. Environmental Engineering, 36 (2): 21-26.
    Wu Y, Ma X, Li Y E, et al. 2012. Impact assessment and tolerable threshold value of CO2 leakage from geological storage on agro-ecosystem[J]. Transactions of the Chinese Society of Agricultural Engineering, 28 (2): 196-205.
    Xu Q, Chen W L, Pu C H, et al. 2022. Theoretical and practical approach based on nature-based solutions in disasters control of major engineering in loess plateau[J]. Journal of Engineering Geology, 30 (4): 1179-1192.
    Xu X. 2022. Analysis of spatio-temporal distribution drivers of CO2 in Shanxi province based on geographically weighted regression model[D]. Xuzhou: China University of Mining and Technology.
    Xu Z G, Chen D Z, Zeng R S, et al. 2008. Technologies for monitoring subsurface CO2 distribution and local environmental effects of CO2 geological storage[J]. Advances in Climate Change Research, 4 (6): 363-368.
    Yang H, Qin Y, Feng G, et al. 2013. Online monitoring of geological CO2 storage and leakage based on wireless sensor networks[J]. IEEE Sensors Journal, 13 (2): 556-562. doi: 10.1109/JSEN.2012.2223210
    Yang H, Wu M, Qin Y, et al. 2017. Optimization method for the localization of sensor network nodes in CO geological sequestration areas: China, CN201710250916.6[P]. 2017-09-15.
    Yu H, Wang X, Cui Z D, et al. 2019. Simulation of fracture propagation during carbon dioxide injection into sandstone lens[J]. Journal of Engineering Geology, 27 (2): 239-249.
    Yuan L, Zhang T, Zhang Q H, et al. 2022. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality[J]. Journal of China Coal Society, 47 (6): 2131-2139.
    Zhang S Q, Diao Y J, Cheng X X, et al. 2010. CO2 geological storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology, 32 (6): 1251-1261.
    Zhang S R, Sang S X, Wu J, et al. 2022. Progress and application of key technologies for CO2 enhancing coalbed methane—A study based on fiele CO2 injection and storage trial in the southern Qinshui Basin[J/OL]. Journal of China Coal Society, 2022-11-04, doi: 10.13225/j.cnki.jccs.L022.1185.
    Zhao X H, Sun P S, Yang J, et al. 2021. Online monitoring system of index gases concentration applied to coal sponta-neous combustion[J]. Journal of China Coal Society, 46 (S1): 319-327.
    Zhao X L, Xiao J Y, Hou J M, et al. 2023. Economic and scale prediction of CO2 capture, utilization and storage technologies in China[J]. Petroleum Exploration and Development, 50 (3): 657-668.
    Zheng X. 2007. Offshore capture and injection technology for associated CO2 in offshore natural gas fields//Proceedings of the 2007 Annual Conference on Ocean Engineering: 297-302.
    Zhou D. 2005. Geological storage of CO2-A new topic in geology[J]. Progress in Natural Science, 15 (7): 782-787.
    毕结昂, 徐佩华, 宋盛渊, 等. 2022. 基于信息量-逻辑回归耦合模型的玛纳斯河流域地质灾害易发性评价[J]. 工程地质学报, 30 (5): 1549-1560. doi: 10.13544/j.cnki.jeg.2022-0327
    陈浮, 杨宝丹, 马静, 等. 2016. CO2地质封存泄漏对土壤微生物群落的影响[J]. 中国矿业大学学报, 45 (6): 1285-1293, 1299. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606027.htm
    陈润, 秦勇, 申建, 等. 2008. 二氧化碳注入煤层多用途研究[J]. 煤田地质与勘探, 36 (6): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200806006.htm
    段振豪, 孙枢, 张驰, 等. 2004. 减少温室气体向大气层的排放——CO2地下储藏研究[J]. 地质论评, 50 (5): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200405011.htm
    付虎艳. 2020. 城市地表温度时空重建及动态驱动因素分析[D]. 武汉: 武汉大学.
    龚耕, 李毅, 唐栋, 等. 2023. THM耦合条件下CO2地质封存注入方案优化研究[J]. 工程地质学报, 31 (3): 1084-1096. doi: 10.13544/j.cnki.jeg.2021-0034
    郭晓东. 2014. Delaunay三角形网络逐点插入法的优化算法[J]. 气象与环境科学, 37 (2): 112-116. doi: 10.16765/j.cnki.1673-7148.2014.02.020
    李坤全, 黎平, 魏敏章, 等. 2021. 长庆油田黄3区长8特低渗油藏二氧化碳驱油与埋存先导试验[J]. 工程地质学报, 29 (5): 1488-1496. doi: 10.13544/j.cnki.jeg.2020-053
    李鹏春, 周蒂, 梁希, 等. 2018. 基于GIS的海上油田CO2-EOR-S数据库建设方法[J]. 地理空间信息, 16 (11): 50-54, 59, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201811015.htm
    李毅, 张可霓, 王笑雨. 2014. CO2地质封存泄漏对浅层地下水影响的分析评价[J]. 工程勘察, (11): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201411010.htm
    刘兰翠, 曹东, 王金南. 2010. 碳捕获与封存技术潜在的环境影响及对策建议[J]. 气候变化研究进展, 6 (4): 290-295. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201004017.htm
    刘廷, 马鑫, 刁玉杰, 等. 2021. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查, 8 (4): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202104012.htm
    刘艳辉, 方然可, 苏永超, 等. 2021. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 29 (1): 116-124. doi: 10.13544/j.cnki.jeg.2020-533
    刘一江. 2001. 聚合物和二氧化碳驱油技术[M]. 北京: 中国石化出版社.
    刘永忠, 王乐, 张甲六. 2021. 封存CO2的泄漏过程预测与泄漏速率的影响因素特性[J]. 化工学报, 63 (4): 1226-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201204034.htm
    刘宇, 曹江, 朱声宝. 2010. 挑战全球气候变化——二氧化碳捕集与封存[J]. 前沿科学, 4 (13): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-QYKX201001006.htm
    秦冰雪, 曾静静. 2023. 全球温室气体遥感卫星发展现状[J/OL]. 中国环境科学, 2023-06-27, doi: 10.19674/j.cnki.issn1000-6923.20230626.004.
    桑树勋, 秦勇主编. 2001. 陆相盆地煤层气地质: 以准噶尔、吐哈盆地为例: A Case of Jungaar and Turpan-Hami Basins[M]. 中国矿业大学出版社.
    桑树勋, 袁亮, 刘世奇, 等. 2022. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 47 (4): 1430-1451. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204003.htm
    孙剑锋, 马超, 胡金树, 等. 2023. 基于灰色关联度与层次分析法耦合的地质灾害易发性评价——以浙江省云和县崇头镇为例[J]. 工程地质学报, 31 (2): 538-551. doi: 10.13544/j.cnki.jeg.2022-0542
    王双明, 申艳军, 孙强, 等. 2022. "双碳"目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 47 (1): 45-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201003.htm
    王文杰, 钱诚, 张宇, 等. 2022.1961~2020年中国两大林区森林火险天气的多尺度特征[J]. 气候与环境研究, 27 (5): 559-577. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH202205001.htm
    王永胜. 2018. 中国神华煤制油深部咸水层二氧化碳捕集与地质封存项目环境风险后评估研究[J]. 环境工程, 36 (2): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201802005.htm
    伍洋, 马欣, 李玉娥, 等. 2012. 地质封存CO2泄漏对农田生态系统的影响评估及耐受阈值[J]. 农业工程学报, 28 (2): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201202036.htm
    徐晓. 2022. 基于地理加权回归模型的山西省CO2时空分布驱动因素分析[D]. 徐州: 中国矿业大学.
    许强, 陈婉琳, 蒲川豪, 等. 2022. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践[J]. 工程地质学报, 30 (4): 1179-1192. doi: 10.13544/j.cnki.jeg.2021-0676
    许志刚, 陈代钊, 曾荣树, 等. 2008. CO2地下埋存分布状况及环境影响的监测[J]. 气候变化研究进展, 4 (6): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200806014.htm
    杨慧, 吴萌萌, 秦勇, 等. 2017. 一种CO地质封存区域的传感网络节点定位优化方法: 中国, CN201710250916.6[P]. 2017-09-15.
    于慧, 王昕, 崔振东, 等. 2019. 二氧化碳注入砂岩透镜体中裂缝扩展模拟[J]. 工程地质学报, 27 (2): 239-249. doi: 10.13544/j.cnki.jeg.2018-001
    袁亮, 张通, 张庆贺, 等. 2022. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报, 47 (6): 2131-2139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202206001.htm
    张森琦, 刁玉杰, 程旭学, 等. 2010. 二氧化碳地质储存逃逸通道及环境监测研究[J]. 冰川冻土, 32 (6): 1251-1261. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201006024.htm
    张守仁, 桑树勋, 吴见, 等. 2022. CO2驱煤层气关键技术研发及应用-基于沁水盆地南部煤层CO2注入和封存现场试验研究[J/OL]. 煤炭学报, 2022-11-04, doi: 10.13225/j.cnki.jccs.L022.1185.
    赵小令, 肖晋宇, 侯金鸣, 等. 2023. 中国二氧化碳捕集利用和封存技术经济性与规模预测[J]. 石油勘探与开发, 50 (3): 657-668. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202303020.htm
    赵晓虎, 孙鹏帅, 杨眷, 等. 2021. 应用于煤自燃指标气体体积分数在线监测系统[J]. 煤炭学报, 46 (S1): 319-327. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1031.htm
    郑晓鹏. 2007. 海上天然气田伴生CO2的海上捕集及回注技术[C]//2007年度海洋工程学术会议论文集: 297-302.
    中华人民共和国生态环境部. 关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见[EB/OL]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202101/t20210113_817221.html, 2021.
    周蒂. 2005. CO2的地质存储-地质学的新课题[J]. 自然科学进展, 15 (7): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200507003.htm
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  51
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-18
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回