Chen C X, Lin M, Chen J M. 2011. Groundwater dynamics[M]. Beijing: Geological Publishing House.
|
Dassanayake S M, Mousa A A, Ilankoon S, et al. 2022. Internal Instability in soils: A critical review of the fundamentals and ramifications[J]. Transportation Research Record Journal of the Transportation Research Board, 2676 (4): 1-26. doi: 10.1177/03611981211056908
|
Ding J, Dong D L, Hu Z Q, et al. 2021. Resistance to permeability damage and pillar safety of coal mining under giant thick loose seam—Take Kouzidong mine as an example[J]. Journal of Engineering Geology, 29 (4): 1071-1083.
|
Fam L M, Ji R J. 2015. A new disaster of high intensity coal mine in western China: water inrush and sand burst[J]. Geological Review, 61 (S): 13-15.
|
Gao A M, Zhu Y K, Wang Q T. 2018. Analysis of roof sand-inrush hydrodynamic condition during shallow seam mining under unconsolidated sand aquifer[J]. Coal Technology, 37 (2): 219-222.
|
Huo J P. 2017. Study on safe mining technology under shallow-buried and water-rich zone[D]. Xi'an: Xi'an University of Science and Technology.
|
Li B. 2019. Numerical simulation study on the relationship between the law of overlying strata and the emergence of roof water in shallow coal seam[D]. Xi'an: Xi'an University of Science and Technology.
|
Li J W. 2013. Study on the mechanism and prevention and control technics of sand inrush and water blasting of shallow buried coal seam mining under thin bedrock[D]. Xi'an: Xi'an University of Science and Technology.
|
Li J W. 2016. Water bursting quicksand critical hydraulic gradient computation and its application in coal mining under ditch[J]. Coal Geology of China, 28 (6): 55-77.
|
Lian H Q, Xia X X, Ran W, et al. 2015. Possibility analysis of water and sand inrush at shallow buried coal seam with unconsolidated formation and thin bedrock[J]. Safety in Coal Mines, 46 (2): 168-171.
|
Liang Y, Tan Z D, Li G J. 1996. Simulation test research on water and soil outburst of weak binding soil[J]. Journal of Xi'an Highway and Jiaotong University, 16 (1): 19-22.
|
Liang Y K, Sui W H, Jiang T, et al. 2022. Experimental investigation on the transport behavior of a sand/mud/water mixture through a mininginduced caving zone[J]. Mine Water and the Environment, 41 : 629-639. doi: 10.1007/s10230-022-00852-z
|
Liu Y X, Wu Y L, Yan Z H, et al. 2021. Laboratory experiment research on water and sand burst for mining coal seam near thick loose layers[J]. Coal Science and Technology magazine, 42 (4): 49-56.
|
Luo L B. 2016. Research on the key technology of safety mining along valleys in shallow buried thin bedrock coal seam of Huluowan Mine[D]. Xi'an: Xi'an University of Science and Technology.
|
Luo Q M, Xuan Y Q. 2022. Sand inrush risk assessent on 1411 working face in Zhangji coal mine[J]. Journal of Hubei Polytechnic University, 38 (2): 32-37.
|
Sui W H, Cai G T, Dong Q H. 2007. Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (10): 2084-2091.
|
Sui W H, Dong Q H, Cai G T, et al. 2008. Quicksand hazards in underground coal mines: mechanism and prevention[M]. Beijing: Geological Publishing House.
|
Sui W H, Liu J W, Gao B L, et al. 2019. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society, 44 (8): 2419-2426.
|
Sui W H. 2021. Mine safety geology: A review[J]. Journal of Engineering Geology, 29 (4): 901-916.
|
Sui W H. 2022a. Active prevention and control of water-sand mixture inrush with high potential energy due to mining based on structural hydrogeology[J]. Journal of Engineering Geology, 30 (1): 101-109.
|
Sui W H. 2022b. Catastrophic mechanism and its prevention and control of seepage deformation and failure of mining rock mass I: a review of water/sand mixture inrush from seam roof[J]. Journal of Earth Sciences and Environment, 44 (6): 903-921.
|
Sui W H. 2023. Evaluation method of anti-seepage failure due to mining near unconsolidated layers I: critical hydraulic gradient[J]. Coal Geology & Exploration, 51 (2): 175-186.
|
Wang S D, Shen X H, Mou P. 2009. Prediction of sand and water inrush in seam with shallow depth and unde rich water aquifer in Hangjiawang mine[J]. Coal Science and Technology, 37 (1): 92-95.
|
Wu G. 2019. Theoretical analysis and model test of siphon drainage in soft soil foundation[D]. Hangzhou: Zhejiang University.
|
Wu Z, Wang X D, Li J W, et al. 2016. Control technology of water-sand inrush for shallow buried and thin bedrock coal seam in Shenfu coalfield[J]. Safety in Coal Mines, 47 (11): 150-154.
|
Xu Y C. 2008a. Fluidity test on sand blended with clay[J]. Journal of China Coal Society, 33 (5): 496-499.
|
Xu Y C. 2008b. Detection method and device for sand seepage damage: China, 101281186[P]. 2008-10-08.
|
Yang W F. 2009. Overburden failure in thin bedrock and characteristics of mixed water and sand flow induced by mining[D]. Xuzhou: China University of Mining and Technology.
|
Zhang B. 2019. Influence law of mining sequence of working face of Yili No. 4 mine on groundwater flow field[D]. Xuzhou: China University of Mining and Technology.
|
Zhang M J, Zhang L P, Jiang X P, et al. 2002. Study on the inrushing mechanism of weak cemented quicksand layer and its forecasting[J]. Metal Mine, (10): 48-50.
|
Zhang M J, Zhang L P. 1997. Study on underground sand inrush mechanism of weakly cemented sand layer with water high-pressure in lignite mining area[J]. Geotechnical Investigation & Surveying, (4): 36-39.
|
Zhang M M. 2021. Study on seepage failure of loose aquifer mining with sand proof coal(rock) pillar[D]. Huainan: Anhui University of Science and Technology.
|
Zhang Y J, Kang Y H, Liu X E. 2006. Prediction on inrush of sand of mining under loosening sandstone aquifer[J]. Journal of China Coal Society, 31 (4): 429-432.
|
Zhang Y J. 2005. Prediction study on inrush of sand and overburden failure of full mechanized top-coal caving under loosening sandstone aquifer in the Tie-bei coal mine[D]. Beijing: Beijing Institute of Coal Science and Technology.
|
陈崇希, 林敏, 成建梅. 2011. 地下水动力学[M]. 北京: 地质出版社.
|
丁甲, 董东林, 胡志强, 等. 2021. 巨厚松散层下煤层开采的抗渗透性破坏和煤柱安全性研究——以口孜东矿为例[J]. 工程地质学报, 29 (4): 1071-1083. doi: 10.13544/j.cnki.jeg.2021-0385
|
范立民, 冀瑞君. 2015. 西部高强度采煤矿井灾害新灾种-突水溃沙[J]. 地质评论, 61 (S): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2015S1009.htm
|
高安民, 祝仰奎, 王庆涛. 2018. 松散砂层下煤层开采顶板溃砂的水动力条件分析[J]. 煤炭技术, 37 (2): 219-222. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201802082.htm
|
霍军鹏. 2017. 浅埋富水区下安全开采技术研究[D]. 西安: 西安科技大学.
|
李博. 2019. 浅埋煤层覆岩活动规律与顶板水涌出关系数值模拟研究[D]. 西安: 西安科技大学.
|
李建文. 2013. 薄基岩浅埋煤层开采突水溃砂致灾机理及防治技术研究[D]. 西安: 西安科技大学.
|
李建文. 2016. 煤矿过沟开采突水溃砂临界水力坡度计算及应用[J]. 中国煤炭地质, 28 (6): 55-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606011.htm
|
连会青, 夏向学, 冉伟, 等. 2015. 厚松散层薄基岩浅埋煤层突水溃砂的可能性分析[J]. 煤矿安全, 46 (2): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201502049.htm
|
梁燕, 谭周地, 李广杰. 1996. 弱胶结砂层突水、涌砂模拟试验研究[J]. 西安公路交通大学学报, 16 (1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL601.004.htm
|
刘延欣, 武宇亮, 闫增会, 等. 2021. 厚松散层下开采突水溃砂室内试验探究[J]. 煤炭科技, 42 (4): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-META202104012.htm
|
罗利卜. 2016. 霍洛湾煤矿浅埋薄基岩煤层顺沟安全开采关键技术研究[D]. 西安: 西安科技大学.
|
罗其明, 宣以琼. 2022. 张集煤矿1411工作面的溃砂风险评估[J]. 湖北理工学院学报, 38 (2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HSGD202202007.htm
|
隋旺华, 蔡光桃, 董青红. 2007. 近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J]. 岩石力学与工程学报, 26 (10): 2084-2091. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710017.htm
|
隋旺华, 董青红, 蔡光桃, 等. 2008. 采掘溃砂机理与预防[M]. 北京: 地质出版社.
|
隋旺华, 刘佳维, 高炳伦, 等. 2019. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报, 44 (8): 2419-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908017.htm
|
隋旺华. 2021. 矿山安全地质学: 综述[J]. 工程地质学报, 29 (4): 901-916. doi: 10.13544/j.cnki.jeg.2021-0566
|
隋旺华. 2022a. 基于结构水文地质学的采掘诱发高势能突水溃砂主动防控[J]. 工程地质学报, 30 (1): 101-109. doi: 10.13544/j.cnki.jeg.2022-0020
|
隋旺华. 2022b. 矿山采掘岩体渗透变形灾变机理及防控I: 顶板溃水溃砂[J]. 地球科学与环境学报, 44 (6): 903-921. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206003.htm
|
隋旺华. 2023. 近松散层采掘抗渗透破坏评价方法Ⅰ: 临界水力坡度[J]. 煤田地质与勘探, 51 (2): 175-186. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202302013.htm
|
王世东, 沈显华, 牟平. 2009. 韩家湾煤矿浅埋煤层富水区下溃砂突水性预测[J]. 煤炭科学技术, 37 (1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901029.htm
|
吴纲. 2019. 软土地基虹吸排水理论分析与模型试验[D]. 杭州: 浙江大学.
|
吴璋, 王晓东, 李建文, 等. 2016. 神府矿区浅埋薄基岩煤层顶板涌水溃砂防控技术[J]. 煤矿安全, 47 (11): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201611042.htm
|
许延春. 2008a. 含黏砂土流动性试验[J]. 煤炭学报, 33 (5): 496-499. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200805005.htm
|
许延春. 2008b. 砂土渗溃破坏性的检测方法及装置: 中国, 101281186[P]. 2008-10-08.
|
杨伟峰. 2009. 薄基岩采动破断及其诱发水砂混合流运移特性研究[D]. 徐州: 中国矿业大学.
|
张斌. 2019. 伊犁四矿工作面开采顺序对地下水流场的影响规律[D]. 徐州: 中国矿业大学.
|
张曼曼. 2021. 留设防砂煤(岩)柱开采松散含水层渗透破坏研究[D]. 淮南: 安徽理工大学.
|
张敏江, 张丽萍, 姜秀萍, 等. 2002. 弱胶结砂层突涌机理及预测研究[J]. 金属矿山, (10): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200210015.htm
|
张敏江, 张丽萍. 1997. 褐煤矿区弱胶结高压水流砂层井下涌砂机理的研究[J]. 工程勘察, (4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199704011.htm
|
张玉军, 康永华, 刘秀娥, 等. 2006. 松软砂岩含水层下煤矿开采溃砂预测[J]. 煤炭学报, 31 (4): 429-432. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200604004.htm
|
张玉军. 2005. 铁北煤矿松软砂岩含水层下综放开采覆岩破坏及溃砂预测研究[D]. 北京: 煤炭科学研究总院.
|