近松散层采掘抗渗透破坏评价方法Ⅱ:水力坡度解析法

董贵明 隋旺华 李雨洲 姚佳音 郭和伟 傅文杰

董贵明, 隋旺华, 李雨洲, 等. 2023. 近松散层采掘抗渗透破坏评价方法Ⅱ: 水力坡度解析法[J]. 工程地质学报, 31(4): 1486-1493. doi: 10.13544/j.cnki.jeg.2023-0279
引用本文: 董贵明, 隋旺华, 李雨洲, 等. 2023. 近松散层采掘抗渗透破坏评价方法Ⅱ: 水力坡度解析法[J]. 工程地质学报, 31(4): 1486-1493. doi: 10.13544/j.cnki.jeg.2023-0279
Dong Guiming, Sui Wanghua, Li Yuzhou, et al. 2023. Evaluation method of anti-seepage failure due to mining near unconsolidated layers Ⅱ: Hydraulic gradient analytical method[J]. Journal of Engineering Geology, 31(4): 1486-1493. doi: 10.13544/j.cnki.jeg.2023-0279
Citation: Dong Guiming, Sui Wanghua, Li Yuzhou, et al. 2023. Evaluation method of anti-seepage failure due to mining near unconsolidated layers Ⅱ: Hydraulic gradient analytical method[J]. Journal of Engineering Geology, 31(4): 1486-1493. doi: 10.13544/j.cnki.jeg.2023-0279

近松散层采掘抗渗透破坏评价方法Ⅱ:水力坡度解析法

doi: 10.13544/j.cnki.jeg.2023-0279
基金项目: 

国家自然科学基金重点项目 42130706

详细信息
    作者简介:

    董贵明(1979-),男,博士,副教授,硕士生导师,主要从事矿山水文地质方面的教学与科研工作. E-mail:guiming14432@126.com

    通讯作者:

    隋旺华(1964-),男,博士,教授,博士生导师,主要从事矿山水文地质工程地质方面的教学与科研工作. E-mail:suiwanghua@cumt.edu.cn

  • 中图分类号: TD324

EVALUATION METHOD OF ANTI-SEEPAGE FAILURE DUE TO MINING NEAR UNCONSOLIDATED LAYERS Ⅱ: HYDRAULIC GRADIENT ANALYTICAL METHOD

Funds: 

the National Natural Science Foundation of China 42130706

  • 摘要: 采掘诱发裂隙导通顶板上覆含水砂层中产生的水力坡度是渗透型溃砂的关键判断依据之一,但是,到目前为止主要是采用定流量下的稳定流水力坡度表达式计算,而实际上,上覆含水层中水动力条件和涌水量在溃水溃砂过程中都是非稳定的。本文依据非稳定流理论,给出了二维潜水、承压水单井定降深模型下的水力坡度J的解析公式,并分析了J随时间和距离的演变特征。结果表明,对于潜水,J随与井的距离r的增加而下降,下降速度随r的增加而减小;存在拐点r′,当r<r′时,J随时间延长而下降,在r>r′时,J随时间延长而增加;随着地下水头H0的增加,J是增加的;本文获得的潜水的非稳定流条件下的J大于潜水稳定流的J。对于承压水,Jr的增加而下降,下降速度随r的增加而减小;与潜水不同的是,在不同r处,J随时间延长而下降,不存在拐点;随着H0的增加,J是增加的;本文获得的承压水的非稳定流条件下的J不总大于承压水稳定流的J。最后,在伊犁河谷某矿对本文方法进行了初步应用。
  • 图  1  潜水定降深水动力模型概念图

    Figure  1.  Hydrodynamic model of unconfined water under fixed-drop

    图  2  潜水定降深水力坡度J变化过程图((a)、(b)、(c)、(d)、(e)分别对应H0=10 m、20 m、30 m、40 m、50 m)

    Figure  2.  The change process diagram of hydraulic gradient J of unconfined water under fixed-drop((a), (b), (c), (d), (e) correspond to H0=10 m, 20 m, 30 m, 40 m, 50 m respectively)

    图  3  潜水非稳定流和稳定流水力坡度对比图

    Figure  3.  Comparison diagram of hydraulic gradient between unsteady flow and steady flow in unconfined water

    图  4  承压水定降深水动力模型概念图

    Figure  4.  Hydrodynamic model of confined water under fixed-drop

    图  5  承压水定降深水力坡度J变化过程图

    Figure  5.  Hydraulic gradient J change process diagram of confined water under fixed-drop

    图  6  承压水非稳定流和稳定流水力坡度对比图

    Figure  6.  Comparison diagram of hydraulic gradient between unsteady flow and steady flow of confined water

  • Chen C X, Lin M, Chen J M. 2011. Groundwater dynamics[M]. Beijing: Geological Publishing House.
    Dassanayake S M, Mousa A A, Ilankoon S, et al. 2022. Internal Instability in soils: A critical review of the fundamentals and ramifications[J]. Transportation Research Record Journal of the Transportation Research Board, 2676 (4): 1-26. doi: 10.1177/03611981211056908
    Ding J, Dong D L, Hu Z Q, et al. 2021. Resistance to permeability damage and pillar safety of coal mining under giant thick loose seam—Take Kouzidong mine as an example[J]. Journal of Engineering Geology, 29 (4): 1071-1083.
    Fam L M, Ji R J. 2015. A new disaster of high intensity coal mine in western China: water inrush and sand burst[J]. Geological Review, 61 (S): 13-15.
    Gao A M, Zhu Y K, Wang Q T. 2018. Analysis of roof sand-inrush hydrodynamic condition during shallow seam mining under unconsolidated sand aquifer[J]. Coal Technology, 37 (2): 219-222.
    Huo J P. 2017. Study on safe mining technology under shallow-buried and water-rich zone[D]. Xi'an: Xi'an University of Science and Technology.
    Li B. 2019. Numerical simulation study on the relationship between the law of overlying strata and the emergence of roof water in shallow coal seam[D]. Xi'an: Xi'an University of Science and Technology.
    Li J W. 2013. Study on the mechanism and prevention and control technics of sand inrush and water blasting of shallow buried coal seam mining under thin bedrock[D]. Xi'an: Xi'an University of Science and Technology.
    Li J W. 2016. Water bursting quicksand critical hydraulic gradient computation and its application in coal mining under ditch[J]. Coal Geology of China, 28 (6): 55-77.
    Lian H Q, Xia X X, Ran W, et al. 2015. Possibility analysis of water and sand inrush at shallow buried coal seam with unconsolidated formation and thin bedrock[J]. Safety in Coal Mines, 46 (2): 168-171.
    Liang Y, Tan Z D, Li G J. 1996. Simulation test research on water and soil outburst of weak binding soil[J]. Journal of Xi'an Highway and Jiaotong University, 16 (1): 19-22.
    Liang Y K, Sui W H, Jiang T, et al. 2022. Experimental investigation on the transport behavior of a sand/mud/water mixture through a mininginduced caving zone[J]. Mine Water and the Environment, 41 : 629-639. doi: 10.1007/s10230-022-00852-z
    Liu Y X, Wu Y L, Yan Z H, et al. 2021. Laboratory experiment research on water and sand burst for mining coal seam near thick loose layers[J]. Coal Science and Technology magazine, 42 (4): 49-56.
    Luo L B. 2016. Research on the key technology of safety mining along valleys in shallow buried thin bedrock coal seam of Huluowan Mine[D]. Xi'an: Xi'an University of Science and Technology.
    Luo Q M, Xuan Y Q. 2022. Sand inrush risk assessent on 1411 working face in Zhangji coal mine[J]. Journal of Hubei Polytechnic University, 38 (2): 32-37.
    Sui W H, Cai G T, Dong Q H. 2007. Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers[J]. Chinese Journal of Rock Mechanics and Engineering, 26 (10): 2084-2091.
    Sui W H, Dong Q H, Cai G T, et al. 2008. Quicksand hazards in underground coal mines: mechanism and prevention[M]. Beijing: Geological Publishing House.
    Sui W H, Liu J W, Gao B L, et al. 2019. A review on disaster mechanism of quicksand with a high potential energy due to mining and its prevention and control[J]. Journal of China Coal Society, 44 (8): 2419-2426.
    Sui W H. 2021. Mine safety geology: A review[J]. Journal of Engineering Geology, 29 (4): 901-916.
    Sui W H. 2022a. Active prevention and control of water-sand mixture inrush with high potential energy due to mining based on structural hydrogeology[J]. Journal of Engineering Geology, 30 (1): 101-109.
    Sui W H. 2022b. Catastrophic mechanism and its prevention and control of seepage deformation and failure of mining rock mass I: a review of water/sand mixture inrush from seam roof[J]. Journal of Earth Sciences and Environment, 44 (6): 903-921.
    Sui W H. 2023. Evaluation method of anti-seepage failure due to mining near unconsolidated layers I: critical hydraulic gradient[J]. Coal Geology & Exploration, 51 (2): 175-186.
    Wang S D, Shen X H, Mou P. 2009. Prediction of sand and water inrush in seam with shallow depth and unde rich water aquifer in Hangjiawang mine[J]. Coal Science and Technology, 37 (1): 92-95.
    Wu G. 2019. Theoretical analysis and model test of siphon drainage in soft soil foundation[D]. Hangzhou: Zhejiang University.
    Wu Z, Wang X D, Li J W, et al. 2016. Control technology of water-sand inrush for shallow buried and thin bedrock coal seam in Shenfu coalfield[J]. Safety in Coal Mines, 47 (11): 150-154.
    Xu Y C. 2008a. Fluidity test on sand blended with clay[J]. Journal of China Coal Society, 33 (5): 496-499.
    Xu Y C. 2008b. Detection method and device for sand seepage damage: China, 101281186[P]. 2008-10-08.
    Yang W F. 2009. Overburden failure in thin bedrock and characteristics of mixed water and sand flow induced by mining[D]. Xuzhou: China University of Mining and Technology.
    Zhang B. 2019. Influence law of mining sequence of working face of Yili No. 4 mine on groundwater flow field[D]. Xuzhou: China University of Mining and Technology.
    Zhang M J, Zhang L P, Jiang X P, et al. 2002. Study on the inrushing mechanism of weak cemented quicksand layer and its forecasting[J]. Metal Mine, (10): 48-50.
    Zhang M J, Zhang L P. 1997. Study on underground sand inrush mechanism of weakly cemented sand layer with water high-pressure in lignite mining area[J]. Geotechnical Investigation & Surveying, (4): 36-39.
    Zhang M M. 2021. Study on seepage failure of loose aquifer mining with sand proof coal(rock) pillar[D]. Huainan: Anhui University of Science and Technology.
    Zhang Y J, Kang Y H, Liu X E. 2006. Prediction on inrush of sand of mining under loosening sandstone aquifer[J]. Journal of China Coal Society, 31 (4): 429-432.
    Zhang Y J. 2005. Prediction study on inrush of sand and overburden failure of full mechanized top-coal caving under loosening sandstone aquifer in the Tie-bei coal mine[D]. Beijing: Beijing Institute of Coal Science and Technology.
    陈崇希, 林敏, 成建梅. 2011. 地下水动力学[M]. 北京: 地质出版社.
    丁甲, 董东林, 胡志强, 等. 2021. 巨厚松散层下煤层开采的抗渗透性破坏和煤柱安全性研究——以口孜东矿为例[J]. 工程地质学报, 29 (4): 1071-1083. doi: 10.13544/j.cnki.jeg.2021-0385
    范立民, 冀瑞君. 2015. 西部高强度采煤矿井灾害新灾种-突水溃沙[J]. 地质评论, 61 (S): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2015S1009.htm
    高安民, 祝仰奎, 王庆涛. 2018. 松散砂层下煤层开采顶板溃砂的水动力条件分析[J]. 煤炭技术, 37 (2): 219-222. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201802082.htm
    霍军鹏. 2017. 浅埋富水区下安全开采技术研究[D]. 西安: 西安科技大学.
    李博. 2019. 浅埋煤层覆岩活动规律与顶板水涌出关系数值模拟研究[D]. 西安: 西安科技大学.
    李建文. 2013. 薄基岩浅埋煤层开采突水溃砂致灾机理及防治技术研究[D]. 西安: 西安科技大学.
    李建文. 2016. 煤矿过沟开采突水溃砂临界水力坡度计算及应用[J]. 中国煤炭地质, 28 (6): 55-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201606011.htm
    连会青, 夏向学, 冉伟, 等. 2015. 厚松散层薄基岩浅埋煤层突水溃砂的可能性分析[J]. 煤矿安全, 46 (2): 168-171. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201502049.htm
    梁燕, 谭周地, 李广杰. 1996. 弱胶结砂层突水、涌砂模拟试验研究[J]. 西安公路交通大学学报, 16 (1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL601.004.htm
    刘延欣, 武宇亮, 闫增会, 等. 2021. 厚松散层下开采突水溃砂室内试验探究[J]. 煤炭科技, 42 (4): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-META202104012.htm
    罗利卜. 2016. 霍洛湾煤矿浅埋薄基岩煤层顺沟安全开采关键技术研究[D]. 西安: 西安科技大学.
    罗其明, 宣以琼. 2022. 张集煤矿1411工作面的溃砂风险评估[J]. 湖北理工学院学报, 38 (2): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HSGD202202007.htm
    隋旺华, 蔡光桃, 董青红. 2007. 近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J]. 岩石力学与工程学报, 26 (10): 2084-2091. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710017.htm
    隋旺华, 董青红, 蔡光桃, 等. 2008. 采掘溃砂机理与预防[M]. 北京: 地质出版社.
    隋旺华, 刘佳维, 高炳伦, 等. 2019. 采掘诱发高势能溃砂灾变机理与防控研究与展望[J]. 煤炭学报, 44 (8): 2419-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908017.htm
    隋旺华. 2021. 矿山安全地质学: 综述[J]. 工程地质学报, 29 (4): 901-916. doi: 10.13544/j.cnki.jeg.2021-0566
    隋旺华. 2022a. 基于结构水文地质学的采掘诱发高势能突水溃砂主动防控[J]. 工程地质学报, 30 (1): 101-109. doi: 10.13544/j.cnki.jeg.2022-0020
    隋旺华. 2022b. 矿山采掘岩体渗透变形灾变机理及防控I: 顶板溃水溃砂[J]. 地球科学与环境学报, 44 (6): 903-921. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206003.htm
    隋旺华. 2023. 近松散层采掘抗渗透破坏评价方法Ⅰ: 临界水力坡度[J]. 煤田地质与勘探, 51 (2): 175-186. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202302013.htm
    王世东, 沈显华, 牟平. 2009. 韩家湾煤矿浅埋煤层富水区下溃砂突水性预测[J]. 煤炭科学技术, 37 (1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901029.htm
    吴纲. 2019. 软土地基虹吸排水理论分析与模型试验[D]. 杭州: 浙江大学.
    吴璋, 王晓东, 李建文, 等. 2016. 神府矿区浅埋薄基岩煤层顶板涌水溃砂防控技术[J]. 煤矿安全, 47 (11): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201611042.htm
    许延春. 2008a. 含黏砂土流动性试验[J]. 煤炭学报, 33 (5): 496-499. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200805005.htm
    许延春. 2008b. 砂土渗溃破坏性的检测方法及装置: 中国, 101281186[P]. 2008-10-08.
    杨伟峰. 2009. 薄基岩采动破断及其诱发水砂混合流运移特性研究[D]. 徐州: 中国矿业大学.
    张斌. 2019. 伊犁四矿工作面开采顺序对地下水流场的影响规律[D]. 徐州: 中国矿业大学.
    张曼曼. 2021. 留设防砂煤(岩)柱开采松散含水层渗透破坏研究[D]. 淮南: 安徽理工大学.
    张敏江, 张丽萍, 姜秀萍, 等. 2002. 弱胶结砂层突涌机理及预测研究[J]. 金属矿山, (10): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200210015.htm
    张敏江, 张丽萍. 1997. 褐煤矿区弱胶结高压水流砂层井下涌砂机理的研究[J]. 工程勘察, (4): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199704011.htm
    张玉军, 康永华, 刘秀娥, 等. 2006. 松软砂岩含水层下煤矿开采溃砂预测[J]. 煤炭学报, 31 (4): 429-432. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200604004.htm
    张玉军. 2005. 铁北煤矿松软砂岩含水层下综放开采覆岩破坏及溃砂预测研究[D]. 北京: 煤炭科学研究总院.
  • 加载中
图(6)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  11
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-08-01
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回