A STUDY ON THE PREVENTION AND CONTROL MODEL OF DEBRIS FLOW DISASTER IN DIFFICULT DRAINAGE AREA—A CASE STUDY OF KEKEXUN DEBRIS FLOW IN BURQIN, XINJIANG
-
摘要: 泥石流灾害的防治通常采用“稳、拦、排”的基本模式,但对于不具备排导条件的泥石流治理方法,仍在探索之中。本文以阿勒泰布尔津县科克逊泥石流为例,对排导受限条件下的泥石流防治模式进行了探索性的分析研究,提出了“上游拦挡物源、中游稳固沟道和消能、下游综合排导”泥石流治理新模式。该模式在稳定和拦截泥石流物源的基础上,充分利用下游地形地质条件,在下游沟口地形开阔处修建拦水堤坝,坝前设置渗水区,拦截和储存水体,借助该区地层良好的渗透性,使临时储存的水体快速下渗转化为地下水进行排泄,从而有效达到治理泥石流灾害的目的。本文以新疆布尔津科克逊泥石流为例,系统分析了研究区地形地貌、水文、工程地质条件、下游堆积区地质结构等,优化了工程布局和结构设计,通过现场工程应用验证了新模式的可行性和有效性,并根据不同地质条件、气候特征、社会经济情况等提出了相应的适应性调整措施,提高泥石流防治的长期有效性,成果可为排导困难区域的泥石流防治提供借鉴。Abstract: Debris flow is a serious natural hazard that requires effective prevention and control measures. However,the conventional mode of "stability,blocking and drainage" is not applicable for debris flow without drainage conditions. This paper proposes a new debris flow control model of "upstream blocking material source,middle stream stable channel and energy dissipation,and downstream comprehensive drainage". This model utilizes the downstream topography and geological conditions to create a seepage area and a water barrier that can infiltrate and drain the water bodies of debris flow,thus reducing the disaster risk. Taking Koxun debris flow in Burjin County of Altai,Xinjiang as a case study,this paper analyzes the characteristics and parameters of debris flow gully,optimizes the engineering layout and design,and verifies the feasibility and effectiveness of the new model through field application. The paper also discusses the adaptability and applicability of the new model for different situations and provides reference for similar debris flow prevention and control in Xinjiang and other places.
-
Key words:
- Burqin /
- Debris flow disaster /
- No drainage conditions /
- Prevention and control mode
-
表 1 泥石流总量及冲出固体物质总量
Table 1. Total amount of a debris flow and the total amount of solid material rushed out
参数 50年一遇(2%) 一次泥石流总量/m3 20 559.2 一次泥石流固体物质总量/m3 8223.7 表 2 拦砂拦截高度与库容计算结果表
Table 2. Calculation results table of sand interception height and storage capacity
编号 沟道位置 坝高度/m 拦挡高程/m 拦截物源量/m3 B1拦砂坝 上游 4.0 648 3258 B2拦砂坝 上游 4.0 622 7153 B3拦砂坝 中游 2.0 608 1076 合计 11 487 -
Chen D B, Han Q Y. 2016. Burjin County Kokxun Debris flow control engineering design[R]. Changji: Xinjiang Huaguang Geological Survey Co., Ltd. Chen N S, Cui P, Liu Z G, et al. 2003. Calculation of debris flow bulk density based on clay particle content[J]. Science in China Series E: Science and Technology, 33(SI): 164-174. Chen N S, Yang C L, Zhou W, et al. 2011. Debris flow exploration technology[M]. Beijing: Science Press. Eckersley D. 1990. Instrumented laboratory flowslides[J]. Géotechnique, 40 (3): 489-502. doi: 10.1680/geot.1990.40.3.489 Feng W K, He S Y, Liu Z G, et al. 2017. Features of debris flows and their engineering control effects at Xinping Gully of Pingwu County[J]. Journal of Engineering Geology, 25 (3): 794-805. Gao X B, Li L H. 2020. Initiation mechanism of typical debris flow hazard in Hot Water River Basin and synergetic prevention study[J]. Journal of Engineering Geology, 28 (5): 1039-1048. Harp E L, Wells W G, Sarmiento J G. 1990. Pore pressure response during failure in soils[J]. Geological Society of America Bulletin, 102 (4): 428-38. doi: 10.1130/0016-7606(1990)102<0428:PPRDFI>2.3.CO;2 He N, Chen N S, Xie W Y, et al. 2015. Characteristics of debris flow in Jiuzhui Gully in the Brahmaputra Jiexu hydropower station site[J]. The Chinese Journal of Geological Hazard and Control, 26 (3): 57-64. Hu X L, Zhou C, Xu C, et al. 2019. Model tests of the response of landslide stabilizing piles to piles with different stiffness[J]. Landslides, 16 (11): 2187-2200. doi: 10.1007/s10346-019-01233-4 Huang S, Shan H S, Xuan W F, et al. 2022. High performance humidity sensor based on cspdbr3 nanocrystals for noncontact sensing hydro-mechanical characteristics of unsaturated soil[J]. Physica Status Solidi-Rapid Research Letters, 16 (6): 1-9. Kang Z C. 1987. A velocity research of debris flow and it is calculating method in China[J]. Mountain Research, 5 (4): 247-259. Li N, Tang C, Bu X H, et al. 2020. Characteristics and evolution of debris flows in Wenchuan County after "5·12"earthquake[J]. Journal of Engineering Geology, 28 (6): 1233-1245. Li Z W. 2011. Initiating mechanism analysis and risk assessment on debris flow in earthquake stricken areas[D]. Chengdu: Chengdu University of Technology. Liao L Y, Zeng Q L, Yuan G X. 2021. Characteristics and mechanism of the rainstorm-induced debris flow on July 16 in Huairou, Beijing[J]. Journal of Engineering Geology, 29 (3): 807-816. Liu M, Yuan L, Zhang P. 2020. Theoretical study on uplift pressure of check dam laid on horizontal soil[J]. Journal of Engineering Geology, 28 (5): 1140-1146. Mo Z B. 2003. Study on formation mechanism and treatment method of mine debris flow[D]. Changsha: Central South University. Pan Q, Zhang Q Z, Li Y L. 2020. Discrete element simulation study of debris flow movement law and impact performance[J]. Journal of Engineering Geology, 28 (5): 1057-1065. Tang B X, Zhang S C. 1992. Research on debris flow[J]. Proceedings of Chinese Academy of Sciences, (2): 119-123. Tian S J, Fan X Y. 2015. Forecast of post-earthquake debris flow based on critical rainfall: Taking the Baisha River Basin as an example[J]. Journal of Natural Disasters, 24 (4): 176-182. http://www.researchgate.net/publication/305536868_Forecast_of_post-earthquake_debris_flow_based_on_critical_rainfall_Taking_the_Baisha_River_Basin_as_ah_example Wang F. 2018. Study on rainfall initiation experiment for debris flow materials and initiation process simulation with PFC3D[D]. Changchun: Jilin University. Wang G F, Tian Y T, Gao Y L, et al. 2020. Relationship between movement characteristics of non-homogeneous debris flow and peak flow[J]. Journal of Engineering Geology, 28 (5): 1028-1038. Wei H Z. 2008. Mechanical behavior of gravelly soil and analysis initiation of debris-flows in Jiangjia ravine[J]. Wuhan: Wuhan Institute of Rock and Soil Mechanics. Yu B. 2008. Research on the calculating density by the deposit of debris flows[J]. Acta Sedimentologica Sinica, 789-797. Yu L, He J B, Ye C M, et al. 2021. Model test on seepage regular pattern of horizontal well in low permeability formation[J]. Journal of Engineering Geology, 29 (5): 1515-1524. Zhao X, Zhang H T, Zhao Z F, et al. 2020. Study on the genesis of rainfall-glacier mixed type debris flow of Haibalo Gully in northwest Yunnan on July 28, 2019[J]. Journal of Engineering Geology, 28 (6): 1339-1349. Zhou C, Huang W, Ai D, et al. 2022. Catastrophic landslide triggered by extreme rainfall in Chongqing, China: July 13, 2020, Niuerwan landslide[J]. Landslides, 19 (10): 2397-2407. doi: 10.1007/s10346-022-01911-w Zhou C, Ma W C, Sui W H. 2022. Transparent soil model test of a landslide with umbrella-shaped anchors and different slope angles in response to rapid drawdown[J]. Engineering Geology, 307 (4): 1-12. 陈德斌, 韩庆洋, 2016. 布尔津县科克逊泥石流防治工程设计书[R]. 昌吉: 新疆华光地质勘察有限公司. 陈宁生, 崔鹏, 刘中港, 等. 2003. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑: 科学技术, 33(SI): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK2003S1017.htm 陈宁生, 杨成林, 周伟, 等. 2011. 泥石流勘查技术[M]. 北京: 科学出版社. 冯文凯, 何山玉, 刘志刚, 等. 2017. 平武县兴坪沟泥石流特征及其工程防治效果分析[J]. 工程地质学报, 25 (3): 794-805. doi: 10.13544/j.cnki.jeg.2017.03.027 高相波, 李丽慧. 2020. 热水河流域典型泥石流灾害成因机制与协同防治研究[J]. 工程地质学报, 28 (5): 1039-1048. doi: 10.13544/j.cnki.jeg.2020-288 贺拿, 陈宁生, 谢万银, 等. 2015. 雅鲁藏布江街需水电站坝址区九锥沟泥石流发育特征[J]. 中国地质灾害与防治学报, 26 (3): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201503012.htm 康志成. 1987. 我国泥石流流速研究与计算方法[J]. 山地研究, 5 (4): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198704011.htm 李宁, 唐川, 卜祥航, 等. 2020. "5·12"地震后汶川县泥石流特征与演化分析[J]. 工程地质学报, 28 (6): 1233-1245. doi: 10.13544/j.cnki.jeg.2019-310 李志为. 2011. 地震灾区泥石流启动机制研究及危险性评价[D]. 成都: 成都理工大学. 廖立业, 曾庆利, 袁广祥. 2021. 北京怀柔7·16暴雨泥石流发育特征与形成机理[J]. 工程地质学报, 29 (3): 807-816. doi: 10.13544/j.cnki.jeg.2019-344 刘茂, 袁磊, 张鹏. 2020. 水平岩土层实体拦砂坝基底水压力研究[J]. 工程地质学报, 28 (5): 1140-1146. doi: 10.13544/j.cnki.jeg.2020-151 莫志柏. 2003. 矿山泥石流形成机理及治理方法研究[D]. 长沙: 中南大学. 潘青, 张清照, 李艺灵. 2020. 基于EDEM的碎屑流运动规律及冲击性能研究[J]. 工程地质学报, 28 (5): 1057-1065. doi: 10.13544/j.cnki.jeg.2020-315 唐邦兴, 章书成. 1992. 泥石流研究[J]. 中国科学院院刊, (2): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX199202007.htm 田述军, 樊晓一. 2015. 基于临界雨量的震后泥石流预测预报研究——以白沙河流域为例[J]. 自然灾害学报, 24 (4): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201504021.htm 王飞. 2018. 泥石流物源降雨启动试验及三维颗粒流模拟研究[D]. 长春: 吉林大学. 王高峰, 田运涛, 高幼龙, 等. 2020. 非匀质泥石流运动特征与峰值流量关系研究[J]. 工程地质学报, 28 (5): 1028-1038. doi: 10.13544/j.cnki.jeg.2020-205 魏厚振. 2008. 蒋家沟泥石流砾石土力学性状与启动过程分析研究[J]. 武汉: 武汉岩土力学研究所. 余斌. 2008. 根据泥石流沉积物计算泥石流容重的方法研究[J]. 沉积学报, 789-797. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805013.htm 余莉, 何计彬, 叶成明, 等. 2021. 低渗透地层水平井渗流规律的模型试验[J]. 工程地质学报, 29 (5): 1515-1524. doi: 10.13544/j.cnki.jeg.2020-134 赵鑫, 张海太, 赵志芳, 等. 2020. 滇西北海巴洛沟"7·28"降雨-冰川融水混合型泥石流成因研究[J]. 工程地质学报, 28 (6): 1372-1382. doi: 10.13544/j.cnki.jeg.2020-505 -