排导困难区域的泥石流灾害防治模式研究——以新疆布尔津科克逊泥石流为例

陈德斌 韩庆洋 付晶 孙瑞

陈德斌, 韩庆洋, 付晶, 等. 2023. 排导困难区域的泥石流灾害防治模式研究——以新疆布尔津科克逊泥石流为例[J]. 工程地质学报, 31(4): 1429-1437. doi: 10.13544/j.cnki.jeg.2023-0281
引用本文: 陈德斌, 韩庆洋, 付晶, 等. 2023. 排导困难区域的泥石流灾害防治模式研究——以新疆布尔津科克逊泥石流为例[J]. 工程地质学报, 31(4): 1429-1437. doi: 10.13544/j.cnki.jeg.2023-0281
Chen Debin, Han Qingyang, Fu Jing, et al. 2023. A study on the prevention and control model of debris flow disaster in difficult drainage area—A case study of Kekexun debris flow in Burqin, Xinjiang[J]. Journal of Engineering Geology, 31(4): 1429-1437. doi: 10.13544/j.cnki.jeg.2023-0281
Citation: Chen Debin, Han Qingyang, Fu Jing, et al. 2023. A study on the prevention and control model of debris flow disaster in difficult drainage area—A case study of Kekexun debris flow in Burqin, Xinjiang[J]. Journal of Engineering Geology, 31(4): 1429-1437. doi: 10.13544/j.cnki.jeg.2023-0281

排导困难区域的泥石流灾害防治模式研究——以新疆布尔津科克逊泥石流为例

doi: 10.13544/j.cnki.jeg.2023-0281
基金项目: 

新疆维吾尔自治区重点研发项目 2021B03004-4

详细信息
    通讯作者:

    陈德斌(1969-),男,高级工程师,主要从事地质灾害防治工作. E-mail:252511149@qq.com

  • 中图分类号: P642.23

A STUDY ON THE PREVENTION AND CONTROL MODEL OF DEBRIS FLOW DISASTER IN DIFFICULT DRAINAGE AREA—A CASE STUDY OF KEKEXUN DEBRIS FLOW IN BURQIN, XINJIANG

Funds: 

the Key R&D Projects of Xinjiang Uygur Autonomous Region 2021B03004-4

  • 摘要: 泥石流灾害的防治通常采用“稳、拦、排”的基本模式,但对于不具备排导条件的泥石流治理方法,仍在探索之中。本文以阿勒泰布尔津县科克逊泥石流为例,对排导受限条件下的泥石流防治模式进行了探索性的分析研究,提出了“上游拦挡物源、中游稳固沟道和消能、下游综合排导”泥石流治理新模式。该模式在稳定和拦截泥石流物源的基础上,充分利用下游地形地质条件,在下游沟口地形开阔处修建拦水堤坝,坝前设置渗水区,拦截和储存水体,借助该区地层良好的渗透性,使临时储存的水体快速下渗转化为地下水进行排泄,从而有效达到治理泥石流灾害的目的。本文以新疆布尔津科克逊泥石流为例,系统分析了研究区地形地貌、水文、工程地质条件、下游堆积区地质结构等,优化了工程布局和结构设计,通过现场工程应用验证了新模式的可行性和有效性,并根据不同地质条件、气候特征、社会经济情况等提出了相应的适应性调整措施,提高泥石流防治的长期有效性,成果可为排导困难区域的泥石流防治提供借鉴。
  • 图  1  研究区构造图

    Figure  1.  Structural diagram of the study area

    图  2  泥石流流域范围

    Figure  2.  Plane graph of debris flow basin

    图  3  泥石流形成区沟谷

    Figure  3.  Gully of debris flow formation area

    图  4  泥石流流通区沟谷

    Figure  4.  The gully of debris flow circulation area

    图  5  泥石流出山口堆积区

    Figure  5.  The accumulation area of debris flow out of the mountain pass

    图  6  流域高程曲线与标准曲线对比图

    Figure  6.  Comparison graph of watershed elevation curve and standard curve

    图  7  泥石流防治总体模式图

    Figure  7.  Overall pattern diagram of debris flow prevention and control

    图  8  拦砂坝典型断面结构设计图模式

    Figure  8.  Structural mode graph of typical section of debris dam

    图  9  导流堤工程结构模式

    Figure  9.  Structural mode of diversion dike engineering

    图  10  设计渗水区地层结构图

    Figure  10.  Designed stratum structure of the water seepage area

    图  11  储水渗水工程结构模式

    Figure  11.  Structure mode of water storage and seepage engineering

    表  1  泥石流总量及冲出固体物质总量

    Table  1.   Total amount of a debris flow and the total amount of solid material rushed out

    参数 50年一遇(2%)
    一次泥石流总量/m3 20 559.2
    一次泥石流固体物质总量/m3 8223.7
    下载: 导出CSV

    表  2  拦砂拦截高度与库容计算结果表

    Table  2.   Calculation results table of sand interception height and storage capacity

    编号 沟道位置 坝高度/m 拦挡高程/m 拦截物源量/m3
    B1拦砂坝 上游 4.0 648 3258
    B2拦砂坝 上游 4.0 622 7153
    B3拦砂坝 中游 2.0 608 1076
    合计 11 487
    下载: 导出CSV
  • Chen D B, Han Q Y. 2016. Burjin County Kokxun Debris flow control engineering design[R]. Changji: Xinjiang Huaguang Geological Survey Co., Ltd.
    Chen N S, Cui P, Liu Z G, et al. 2003. Calculation of debris flow bulk density based on clay particle content[J]. Science in China Series E: Science and Technology, 33(SI): 164-174.
    Chen N S, Yang C L, Zhou W, et al. 2011. Debris flow exploration technology[M]. Beijing: Science Press.
    Eckersley D. 1990. Instrumented laboratory flowslides[J]. Géotechnique, 40 (3): 489-502. doi: 10.1680/geot.1990.40.3.489
    Feng W K, He S Y, Liu Z G, et al. 2017. Features of debris flows and their engineering control effects at Xinping Gully of Pingwu County[J]. Journal of Engineering Geology, 25 (3): 794-805.
    Gao X B, Li L H. 2020. Initiation mechanism of typical debris flow hazard in Hot Water River Basin and synergetic prevention study[J]. Journal of Engineering Geology, 28 (5): 1039-1048.
    Harp E L, Wells W G, Sarmiento J G. 1990. Pore pressure response during failure in soils[J]. Geological Society of America Bulletin, 102 (4): 428-38. doi: 10.1130/0016-7606(1990)102<0428:PPRDFI>2.3.CO;2
    He N, Chen N S, Xie W Y, et al. 2015. Characteristics of debris flow in Jiuzhui Gully in the Brahmaputra Jiexu hydropower station site[J]. The Chinese Journal of Geological Hazard and Control, 26 (3): 57-64.
    Hu X L, Zhou C, Xu C, et al. 2019. Model tests of the response of landslide stabilizing piles to piles with different stiffness[J]. Landslides, 16 (11): 2187-2200. doi: 10.1007/s10346-019-01233-4
    Huang S, Shan H S, Xuan W F, et al. 2022. High performance humidity sensor based on cspdbr3 nanocrystals for noncontact sensing hydro-mechanical characteristics of unsaturated soil[J]. Physica Status Solidi-Rapid Research Letters, 16 (6): 1-9.
    Kang Z C. 1987. A velocity research of debris flow and it is calculating method in China[J]. Mountain Research, 5 (4): 247-259.
    Li N, Tang C, Bu X H, et al. 2020. Characteristics and evolution of debris flows in Wenchuan County after "5·12"earthquake[J]. Journal of Engineering Geology, 28 (6): 1233-1245.
    Li Z W. 2011. Initiating mechanism analysis and risk assessment on debris flow in earthquake stricken areas[D]. Chengdu: Chengdu University of Technology.
    Liao L Y, Zeng Q L, Yuan G X. 2021. Characteristics and mechanism of the rainstorm-induced debris flow on July 16 in Huairou, Beijing[J]. Journal of Engineering Geology, 29 (3): 807-816.
    Liu M, Yuan L, Zhang P. 2020. Theoretical study on uplift pressure of check dam laid on horizontal soil[J]. Journal of Engineering Geology, 28 (5): 1140-1146.
    Mo Z B. 2003. Study on formation mechanism and treatment method of mine debris flow[D]. Changsha: Central South University.
    Pan Q, Zhang Q Z, Li Y L. 2020. Discrete element simulation study of debris flow movement law and impact performance[J]. Journal of Engineering Geology, 28 (5): 1057-1065.
    Tang B X, Zhang S C. 1992. Research on debris flow[J]. Proceedings of Chinese Academy of Sciences, (2): 119-123.
    Tian S J, Fan X Y. 2015. Forecast of post-earthquake debris flow based on critical rainfall: Taking the Baisha River Basin as an example[J]. Journal of Natural Disasters, 24 (4): 176-182. http://www.researchgate.net/publication/305536868_Forecast_of_post-earthquake_debris_flow_based_on_critical_rainfall_Taking_the_Baisha_River_Basin_as_ah_example
    Wang F. 2018. Study on rainfall initiation experiment for debris flow materials and initiation process simulation with PFC3D[D]. Changchun: Jilin University.
    Wang G F, Tian Y T, Gao Y L, et al. 2020. Relationship between movement characteristics of non-homogeneous debris flow and peak flow[J]. Journal of Engineering Geology, 28 (5): 1028-1038.
    Wei H Z. 2008. Mechanical behavior of gravelly soil and analysis initiation of debris-flows in Jiangjia ravine[J]. Wuhan: Wuhan Institute of Rock and Soil Mechanics.
    Yu B. 2008. Research on the calculating density by the deposit of debris flows[J]. Acta Sedimentologica Sinica, 789-797.
    Yu L, He J B, Ye C M, et al. 2021. Model test on seepage regular pattern of horizontal well in low permeability formation[J]. Journal of Engineering Geology, 29 (5): 1515-1524.
    Zhao X, Zhang H T, Zhao Z F, et al. 2020. Study on the genesis of rainfall-glacier mixed type debris flow of Haibalo Gully in northwest Yunnan on July 28, 2019[J]. Journal of Engineering Geology, 28 (6): 1339-1349.
    Zhou C, Huang W, Ai D, et al. 2022. Catastrophic landslide triggered by extreme rainfall in Chongqing, China: July 13, 2020, Niuerwan landslide[J]. Landslides, 19 (10): 2397-2407. doi: 10.1007/s10346-022-01911-w
    Zhou C, Ma W C, Sui W H. 2022. Transparent soil model test of a landslide with umbrella-shaped anchors and different slope angles in response to rapid drawdown[J]. Engineering Geology, 307 (4): 1-12.
    陈德斌, 韩庆洋, 2016. 布尔津县科克逊泥石流防治工程设计书[R]. 昌吉: 新疆华光地质勘察有限公司.
    陈宁生, 崔鹏, 刘中港, 等. 2003. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学E辑: 科学技术, 33(SI): 164-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK2003S1017.htm
    陈宁生, 杨成林, 周伟, 等. 2011. 泥石流勘查技术[M]. 北京: 科学出版社.
    冯文凯, 何山玉, 刘志刚, 等. 2017. 平武县兴坪沟泥石流特征及其工程防治效果分析[J]. 工程地质学报, 25 (3): 794-805. doi: 10.13544/j.cnki.jeg.2017.03.027
    高相波, 李丽慧. 2020. 热水河流域典型泥石流灾害成因机制与协同防治研究[J]. 工程地质学报, 28 (5): 1039-1048. doi: 10.13544/j.cnki.jeg.2020-288
    贺拿, 陈宁生, 谢万银, 等. 2015. 雅鲁藏布江街需水电站坝址区九锥沟泥石流发育特征[J]. 中国地质灾害与防治学报, 26 (3): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201503012.htm
    康志成. 1987. 我国泥石流流速研究与计算方法[J]. 山地研究, 5 (4): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198704011.htm
    李宁, 唐川, 卜祥航, 等. 2020. "5·12"地震后汶川县泥石流特征与演化分析[J]. 工程地质学报, 28 (6): 1233-1245. doi: 10.13544/j.cnki.jeg.2019-310
    李志为. 2011. 地震灾区泥石流启动机制研究及危险性评价[D]. 成都: 成都理工大学.
    廖立业, 曾庆利, 袁广祥. 2021. 北京怀柔7·16暴雨泥石流发育特征与形成机理[J]. 工程地质学报, 29 (3): 807-816. doi: 10.13544/j.cnki.jeg.2019-344
    刘茂, 袁磊, 张鹏. 2020. 水平岩土层实体拦砂坝基底水压力研究[J]. 工程地质学报, 28 (5): 1140-1146. doi: 10.13544/j.cnki.jeg.2020-151
    莫志柏. 2003. 矿山泥石流形成机理及治理方法研究[D]. 长沙: 中南大学.
    潘青, 张清照, 李艺灵. 2020. 基于EDEM的碎屑流运动规律及冲击性能研究[J]. 工程地质学报, 28 (5): 1057-1065. doi: 10.13544/j.cnki.jeg.2020-315
    唐邦兴, 章书成. 1992. 泥石流研究[J]. 中国科学院院刊, (2): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX199202007.htm
    田述军, 樊晓一. 2015. 基于临界雨量的震后泥石流预测预报研究——以白沙河流域为例[J]. 自然灾害学报, 24 (4): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201504021.htm
    王飞. 2018. 泥石流物源降雨启动试验及三维颗粒流模拟研究[D]. 长春: 吉林大学.
    王高峰, 田运涛, 高幼龙, 等. 2020. 非匀质泥石流运动特征与峰值流量关系研究[J]. 工程地质学报, 28 (5): 1028-1038. doi: 10.13544/j.cnki.jeg.2020-205
    魏厚振. 2008. 蒋家沟泥石流砾石土力学性状与启动过程分析研究[J]. 武汉: 武汉岩土力学研究所.
    余斌. 2008. 根据泥石流沉积物计算泥石流容重的方法研究[J]. 沉积学报, 789-797. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200805013.htm
    余莉, 何计彬, 叶成明, 等. 2021. 低渗透地层水平井渗流规律的模型试验[J]. 工程地质学报, 29 (5): 1515-1524. doi: 10.13544/j.cnki.jeg.2020-134
    赵鑫, 张海太, 赵志芳, 等. 2020. 滇西北海巴洛沟"7·28"降雨-冰川融水混合型泥石流成因研究[J]. 工程地质学报, 28 (6): 1372-1382. doi: 10.13544/j.cnki.jeg.2020-505
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  37
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-07-27
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回