相关性阻滞作用对局域化迭代集合平滑估计渗透系数的影响

    TAPERING EFFECT ON ESTIMATING HYDRAULIC CONDUCTIVITY VIA CORRELATION-BASED LOCALIZED ITERATIVE ENSEMBLE SMOOTHER

    • 摘要: 基于相关性的局域化集合数据同化方法适用于观测信息与反演参数之间不存在物理距离时的情形,但参数的反演精度受阻滞作用影响。为了厘清相关性阻滞作用对局域化迭代集合平滑估计渗透系数的影响,本文采用不同的集合大小N,相关系数(包括Pearson,Kendall和Spearman)、和阻滞函数(包括12种函数)构建局域化迭代平滑方法用于估计二维孔隙承压含水层的渗透系数场。研究结果显示:(1)使用Pearson相关系数得到的渗透系数反演精度最高,其次为Spearman;(2)当考虑椭圆方程分别与Gaspari-Cohn,双曲正切函数和指数函数组合的复合函数作为阻滞函数时,局域化效果总体优于其他组合的阻滞函数。本文提出的相关性局域化迭代集合平滑方法框架和研究结果可为水文地质参数估计的研究与应用提供重要的参考。

       

      Abstract: The correlation-based localized ensemble data assimilation method can be used to estimate model parameters when there is no physical distance between observation and parameter. The estimation accuracy of model parameters is impacted by the way to obtain the tapering factor,which is termed tapering effect,jointly determined by tapering function and correlation coefficient. To investigate how tapering effect impacts the estimate accuracy of hydraulic conductivity,we estimate the spatially random conductivity field of a two-dimensional porous-confined aquifer by considering a variety of combinations of ensemble size,types of correlation coefficient(including Kendall,Spearman,and Pearson),and tapering function. The results show that(i) the Pearson-based localization approaches perform best among the three types of correlation coefficients considered,followed by the Spearman-based ones; and (ii) the tapering effect,which is characterized as the composition of elliptic equation and Gaspari-Cohn function(hyperbolic tangent function or exponential function),leads to overall better performance than the others. The results and the framework of the correlation-based localized iterative ensemble smoother proposed in this study can provide important references for estimating hydrogeology parameters.

       

    /

    返回文章
    返回