基于SSA-CNN-BiLSTM-AM和KDE的滑坡位移混合点-区间预测方法

    HYBRID POINT-INTERVAL PREDICTION METHOD FOR LANDSLIDE DISPLACEMENT BASED ON SSA-CNN-BILSTM-AM AND KDE

    • 摘要: 滑坡位移预测有利于建立地质灾害早期预警系统,但现有研究多关注预测精度而忽略模型不确定性的问题。鉴于此,本研究提出了一种融合麻雀优化算法(SSA)、卷积神经网络(CNN)、双向长短时记忆神经网络(BiLSTM)、注意力机制(Attention Mechanism)和核密度估计(KDE)的混合点-区间预测。首先,基于变分模态分解(VMD)将滑坡位移分解趋势项和周期项,采用多层感知器(MLP)预测趋势位移,SSA-CNN-BiLSTM-AM预测周期位移,最后基于KDE方法计算预测误差的概率密度并生成多置信水平的预测区间以量化不确定性。以八字门滑坡为对象的案例研究表明,与LSTM相比,SSA-CNN-BiLSTM-AM模型的平均绝对误差、均方根误差分别降低了18.27%、29.14%,决定系数增加了8.91%;基于覆盖宽度的准则(CWC)指标减小了78.008,说明SSA-CNN-BiLSTM-AM模型有较高的点预测精度,同时KDE方法提供了可靠的预测区间。该研究有助于提高滑坡风险评估和灾害预警能力,为滑坡灾害的早期识别和临滑预警提供可靠的科学依据。

       

      Abstract: Accurate prediction of landslide displacement is essential for establishing effective geological hazard early warning systems. While existing research has primarily emphasized predictive accuracy,the quantification of model uncertainty has often been overlooked. To address this gap,this study proposes a novel hybrid point-interval prediction framework that integrates the Sparrow Search Algorithm(SSA),Convolutional Neural Network(CNN),Bidirectional Long Short-Term Memory(BiLSTM),Attention Mechanism,and Kernel Density Estimation(KDE). The methodology first decomposes landslide displacement into trend and periodic components using Variational Mode Decomposition(VMD). A Multilayer Perceptron(MLP)is then employed to predict the trend displacement,while the SSA-CNN-BiLSTM-AM model is used to forecast the periodic component. KDE is subsequently applied to estimate the probability density of prediction errors,generating prediction intervals at multiple confidence levels to quantify uncertainty. A case study conducted on the Bazimen landslide demonstrated the superiority of the proposed framework. Compared to a conventional LSTM model,the SSA-CNN-BiLSTM-AM model reduced the Mean Absolute Error(MAE)by 18.27% and the Root Mean Squared Error(RMSE)by 29.14%,while increasing the Coefficient of Determination(R2)by 8.91%. The Coverage Width-based Criterion(CWC)decreased by 78.008,confirming both improved point prediction accuracy and effective uncertainty quantification. These advances provide a scientifically robust foundation for enhancing landslide risk assessment and early warning capabilities,ultimately contributing to more reliable landslide hazard identification and pre-failure alert systems.

       

    /

    返回文章
    返回