青海共和盆地干热岩储层天然裂缝对水力压裂裂缝的影响

    INFLUENCE OF NATURAL FRACTURE ON HYDRAULIC-FRACTURE PROPAGATION OF HOT DRY ROCK RESERVOIR WITHIN THE GONGHE BASIN

    • 摘要: 干热岩开发目前主要依赖于增强型地热系统(Enhanced Geothermal Systems,EGS)。已有工程实践表明天然裂缝对干热岩储层压裂和连通性起着重要作用。当前对干热岩储层水力压裂裂缝扩展机理已有较多理论与试验研究,但在实际干热岩压裂过程中,结合压裂场地地应力、储层岩石力学非均质性尤其是复杂天然裂缝等因素,综合评价水力压裂裂缝扩展规律的研究仍有待深入。本文依托青海共和干热岩勘查试采工程场地,在对干热岩储层天然裂缝展布规律研究基础上,结合水力压裂施工工况和微地震、电磁法监测数据等,深入分析了青海共和干热岩储层天然裂缝对水力压裂裂缝扩展的影响。地质调查、岩心分析、测井等综合研究揭示,共和盆地干热岩体中发育了以北西和北东向为主的天然裂缝,其空间分布受多期构造叠加控制,呈显著非均质性。在小规模压裂情况下,受自身力学性质的影响,水力裂缝易沿天然裂缝面扩展。随着压裂规模逐渐增大,青海共和试采场地水力裂缝呈现“先沿天然裂缝扩展,然后逐步转为最大主应力控制方向”的扩展特征,且裂缝网络以剪切-走滑型破坏为主。研究成果有望深化干热岩水力压裂扩展机理的相关认识,为优化干热岩水力压裂设计提供决策依据。

       

      Abstract: The commercial development of Hot Dry Rock(HDR)resources currently depends on Enhanced Geothermal Systems(EGS),where natural fracture networks play a decisive role in reservoir connectivity. While significant theoretical and experimental research has clarified fracture propagation mechanisms in HDR,a comprehensive evaluation of hydraulic fracture behavior—accounting for actual in-situ stress conditions, reservoir rock heterogeneity, and complex natural fractures—remains insufficiently studied in real-world EGS stimulation processes. Focusing on the Gonghe HDR demonstration site in Qinghai Province, this study first characterizes the three-dimensional distribution of natural fractures and quantitatively analyzes the influence of the present-day stress regime on fracture reactivation and propagation. By integrating treatment data with microseismic and time-frequency electromagnetic monitoring, we assessed how pre-existing natural fractures control hydraulic-fracture propagation within the Gonghe granite reservoir. The research reveals that natural fractures in the Gonghe Basin HDR are predominantly oriented NW and NE. Their spatial distribution, controlled by multi-stage tectonic superposition, exhibits strong heterogeneity. At low injection volumes, the rock's intrinsic mechanical properties promote hydraulic fracture initiation along pre-existing natural fractures. As stimulation intensity increases, hydraulic fractures at the Gonghe site evolve from initially following natural fractures to reorienting toward the direction controlled by the maximum principal stress, resulting in a hybrid propagation pattern. The resulting fracture network is dominated by shear and strike-slip failure modes. These findings enhance the mechanistic understanding of hydraulic stimulation in HDR reservoirs and provide a quantitative basis for optimizing EGS design.

       

    /

    返回文章
    返回