基于XGBoost-SHAP模型的上海中心城区地面沉降驱动因子识别

    IDENTIFICATION OF GROUND SUBSIDENCE DRIVING FACTORS IN SHANGHAI CENTRAL URBAN AREA BASED ON XGBOOST-SHAP MODEL

    • 摘要: 上海市地面沉降已步入微量沉降阶段,其驱动因素由单一地下水开采主导转向多因素耦合驱动,对驱动因素的研究可为城市地质灾害精准防控提供科学依据。利用XGBoost机器学习模型模拟预测上海市中心城区的地面沉降,并用SHAP方法阐明各因素对地面沉降的影响。基于2020~2024年上海市中心城区地面沉降量、水位变幅、地温变化、地层岩性以及工程建设4类驱动因素共12个因子数据训练、验证XGBoost模型,并结合SHAP方法对模型结果进行解释。结果表明:基于XGBoost算法构建的模型能够较好地拟合和预测地面沉降量(R2=0.9846,RMSE=0.1240,MAE=0.0900);在所研究的因素中,XGBoost+SHAP方法揭示了上海市中心城区地面沉降的驱动因素主要为浅部含水层水位变幅、恒温层温度场变化、软土层厚度以及地层岩性等关键变量,其中浅部含水层水位变幅、恒温层温度对沉降具有正向影响,软土层厚度、地层砂性土比例表现为负向影响。利用机器学习结合SHAP的方法研究地面沉降驱动因素,兼具理论价值与现实指导意义。

       

      Abstract: Shanghai has entered a phase of microscale land subsidence, with its driving factors shifting from being dominated by groundwater extraction to multifactorial coupling. This study applied the XGBoost machine learning algorithm to predict subsidence in central Shanghai using monitoring data from 2020 to 2024,incorporating 12 factors across four categories: aquifer water-level variations, ground temperature changes, lithological properties, and construction activity. Factor contributions were quantified through Shapley value analysis. The results demonstrate that XGBoost achieved high prediction accuracy(R2=0.9846,RMSE=0.1240,MAE=0.0900). The XGBoost-SHAP analysis identified three primary driving factors: shallow aquifer water-level variations, temperature changes in the stable zone, and the combined effect of soft soil thickness and sandy soil ratio. Shallow aquifer water-level and stable-zone temperature changes exhibited positive correlations with settlement, while soft soil thickness and sandy soil ratio showed negative correlations. This integrated approach advances the theoretical understanding of subsidence mechanisms and supports the development of targeted prevention strategies.

       

    /

    返回文章
    返回