CALCULATION METHOD FOR OEDOMETRIC MODULUS OF SOIL WITH EFFECTS OF STRESS HISTORY AND STRESS LEVEL
-
摘要: 为了考虑应力历史对地基沉降变形的影响,本文基于单对数函数,引入压缩曲线在单对数空间上曲率最小时所对应的竖向应力(简称特征应力),建立了能够描述正常固结黏土、超固结黏土和砂土的压缩线表达式。然后,基于该表达式提出完全侧限条件下的压缩模量计算式,并分析了特征应力和压缩指数对压缩模量的影响规律。最后,通过与室内试验结果和实际工程中地基变形进行对比,验证了本文所提方法的合理性。Abstract: This paper presents a united expression of the compression lines of normal compressed clay, overconsolidated clay and sand by introducing a special vertical stress in single logarithmic coordinates. And then, based on the new expression and the concept of compression modulus, we obtain a calculation method for the compressive modulus of soil. Evolutionary laws of compressive modulus are presented and analyzed with the special vertical stress and compression index changing, respectively. Finally, comparisons with the test results and foundation settlement in engineering case indicate the rationality of this calculation method.
-
Key words:
- Oedometric modulus /
- Stress history /
- Stress level /
- Foundation settlement
-
表 1 试验土的基本物理指标
Table 1. Physical indexes of soil
土的种类 含水率/% 干密度/ (g·cm-3) 内摩擦角/(°) 黏聚力/kPa 初始孔隙比e0 ①粉土 17 1.42 18.7 9.5 1.22 ②粉土 23.8 1.45 21.8 10.4 1.30 ③粉质黏土 24.5 1.45 16.5 22.5 1.32 ④粉土夹粉质黏土 25.0 1.46 22.7 11.5 1.31 表 2 材料参数
Table 2. Material parameters
土的种类 压缩指数 σvc/kPa ①粉土 0.14 220 ②粉土 0.14 190 ③粉质黏土 0.15 220 ④粉土夹粉质黏土 0.1 160 表 3 材料参数
Table 3. Material parameters
土的种类 压缩指数 初始孔隙比 ②粉土黏土 0.133/ln10 0.96 ③淤泥质粉质黏土 0.21/ln10 1.2 ④淤泥质黏土 0.38/ln10 1.47 ⑤粉质黏土 0.38/ln10 0.94 表 4 本文计算过程
Table 4. Calculation procedure
土层 σszi/kPa Hi/cm σvc/kPa σzi/kPa Δe ΔS/cm ② 29 160 58 84 0.039 3.2 ③ 119 520 209 68.3 0.017 4.1 ④ 202 500 303 45.6 0.014 2.89 ⑤ 292 500 292 44.6 0.012 3.13 -
Chen F J, Ma J L, Zhu L, et al. 2012. Settlement calculation of pile foundation in deep-soft soil considering depth effect of compression modulus[J]. Rock and Soil Mechanics, 33 (S2):167-172. http://cn.bing.com/academic/profile?id=31c5ccea2416ba7550eb9dbbb372da34&encoded=0&v=paper_preview&mkt=zh-cn Deng W L, Zhou Z M. 1996. A calculating method for soils modulus of compressibility (Es)[J]. Industrial Construction, 26(10):34-36. Hou X L, Tan X H, Liu Z Y, et al. 2017. Compressive indices of cohesive soil and relation to degree of saturation[J]. Journal of Engineering Geology, 25(5):1336-1343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201705021 Jiang A L, Zhao C F, Gao D Z. 2003. Mathematical model method of determining preconsolidation pressure[J]. Rock and Soil Mechanics, 24(2):292-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200302031 Jose B T, Sridharan A, Abraham B M. 1989. Log-log method for determination of preconsolidation pressure[J]. Geotechnical Testing, 12(3):230-237. doi: 10.1520/GTJ10974J Liu Q Y, Liang J G, Feng H P. 2018. The settlement and deformation of foundation under high stress[J]. Journal of Water Resources and Architectural Engineering, 16(5):111-115. http://d.old.wanfangdata.com.cn/Periodical/fsjs201805021 Luo T, Liu L, Yao Y P. 2017. Description of critical state for sands considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 39(4):592-600. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201704002 Mei G X, Zai J M, Zhao W B. 2003. A simplified calculation method of oedometric modulus of soil and its application[J]. Rock and Soil Mechanics, 24(6):1057-1064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200306041 Meng X L, Zhao X Y, Fan Z H, et al. 2017. Experimental study of compressive modulus of metroshield generation zone in kunming cumulosols[J]. Journal of Engineering Geology, 25(6):1617-1623. Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2011. Code for design of building foundation(GB 50007-2011)[S]. Beijing: China Architecture & Building Press. Qian J H, Yin Z Z. 1996. Geotechnical principles and calculations[M]. Beijing:China Water & Power Press. Sridharan A, Abraham B M, Jose B T. 1991. Improved technique for estimation of preconsolidation pressure[J]. Géotechnique, 41(2):263-268. doi: 10.1680/geot.1991.41.2.263 Wang Z L, Zheng M X, Li Y C. 2005. Research on mathematic model method for calculating pre-consolidation pressure and its application[J]. Rock and Soil Mechanics, 26(10):1587-1590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200510012 Xu G P, Fu B Y, Zhang Z G, et al. 2013. Janbu tangent modulus method for settlement and determination of parameters[J]. Chinese Journal of Geotechnical Engineering, 35 (S2):804-808. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8494417 Yang A W, Zhang Z D, Li X W, et al. 2017. Microscopic structure evaluation parameters of soft dredger fill in stage of safe operation hyperplasia with preconsolidation effect[J]. Journal of Engineering Geology, 25(2):284-291. Yang G H. 2006. Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method[J]. Chinese Journal of Geotechnical Engineering, 28(11):1927-1931. http://cn.bing.com/academic/profile?id=c6fdf25a5f19afebdf55de0ee47d257e&encoded=0&v=paper_preview&mkt=zh-cn Yao Y P, Liu L, Luo T, et al. 2019. Unified hardening(UH)model for clays and sands[J]. Computers and Geotechnics, 110:326-343. doi: 10.1016/j.compgeo.2019.02.024 Yao Y P, Liu L, Luo T. 2018. A constitutive model for granular soils[J]. Science China Technological Sciences, 61(10):1546-1555. doi: 10.1007/s11431-017-9205-8 陈福江, 马建林, 朱林, 等. 2012.考虑压缩模量深度效应的深厚软土桩基沉降计算[J].岩土力学, 33 (S2):167-172. http://cdmd.cnki.com.cn/Article/CDMD-10613-1016166612.htm 邓文龙, 周正茂. 1996.土的压缩模量Es的一种取值方法[J].工业建筑, 26(10):34-36. doi: 10.3321/j.issn:1000-8993.1996.10.012 侯晓亮, 谭晓慧, 刘泽勇, 等. 2017.黏性土压缩指标及其与饱和度的关系[J].工程地质学报, 25(5):1336-1343. http://www.gcdz.org/CN/abstract/abstract12553.shtml 姜安龙, 赵春风, 高大钊. 2003.确定先期固结压力的数学模型法[J].岩土力学, 24(2):292-295. doi: 10.3969/j.issn.1000-7598.2003.02.031 刘启源, 梁金国, 冯怀平. 2018.考虑压缩模量随应力水平变化的地基沉降变形研究[J].水利与建筑工程学报, 16(5):111-115. doi: 10.3969/j.issn.1672-1144.2018.05.020 罗汀, 刘林, 姚仰平. 2017.考虑颗粒破碎的砂土临界状态特性描述[J].岩土工程学报, 39(4):592-600. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201704002 梅国雄, 宰金珉, 赵维炳. 2003.土体侧限压缩模量简易计算方法及其应用[J].岩土力学, 24(6):1057-1064. doi: 10.3969/j.issn.1000-7598.2003.06.041 孟祥连, 赵晓彦, 范智浩, 等. 2017.昆明泥炭质土地铁盾构等代层压缩模量试验研究[J].工程地质学报, 25(6):1617-1623. http://www.gcdz.org/CN/abstract/abstract12624.shtml 钱家欢, 殷宗泽. 1996.土工原理与计算[M].北京:中国水利水电出版社. 王志亮, 郑明新, 李永池. 2005.求前期固结应力的数学模型研究及应用[J].岩土力学, 26(10):1587-1590. doi: 10.3969/j.issn.1000-7598.2005.10.012 徐国平, 付佰勇, 张志刚, 等. 2013. Janbu切线模量沉降计算方法及参数取值初探[J].岩土工程学报, 35 (S2):804-808. http://d.old.wanfangdata.com.cn/Conference/8494417 杨爱武, 张振东, 李潇雯, 等. 2017.考虑前期固结影响的吹填软土安全运营阶段微结构演化特征[J].工程地质学报, 25(2):284-291. http://www.gcdz.org/CN/article/downloadArticleFile.do?attachType=PDF&id=12350 杨光华. 2006.地基非线性沉降计算的原状土切线模量法[J].岩土工程学报, 28(11):1927-1931. doi: 10.3321/j.issn:1000-4548.2006.11.002 姚仰平, 刘林, 罗汀. 2016.砂土的UH模型[J].岩土工程学报, 38(12):2147-2153. doi: 10.11779/CJGE201612002 中华人民共和国住房和城乡建设部. 2011.建筑地基基础设计规范(GB 50007-2011)[S].北京: 中国建筑工业出版社. -