引用排行

(被引数据来源于全网,每月更新)
1
2017年8月8日九寨沟MS7.0地震诱发了数以千计的崩滑体,产生的大量松散固体碎屑在降雨作用下极易启动转化为新的滑坡或泥石流形成次生灾害,因此对九寨沟景区进行滑坡易发性评价尤为必要。基于震前、震后高精度遥感影像对比分析结合现场调查,共获取1047处滑坡,总面积为3.88 km2。在分析滑坡发育分布与影响因素关系的基础上,本文选取了构造因子、地形因子、地质因子及其他因子等9个指标,采用确定性系数(CF)模型、逻辑回归(Logistic)模型以及两种模型耦合分析进行滑坡易发性评价。研究结果表明,坡度、坡向、高程和地层岩性是影响滑坡分布的主要因子;研究区被划分为低易发区(60.72%)、中度易发区(24.18%)、高易发区(9.89%)和极高易发区(5.21%),高-极高易发区基本沿沟谷分布,面积为99 km2,其中熊猫海、老虎海周边均为滑坡极高易发区;采用耦合模型比单一模型评价结果更加合理,其结果可作为景区滑坡防治和分段分时开放的参考依据。 2017年8月8日九寨沟MS7.0地震诱发了数以千计的崩滑体,产生的大量松散固体碎屑在降雨作用下极易启动转化为新的滑坡或泥石流形成次生灾害,因此对九寨沟景区进行滑坡易发性评价尤为必要。基于震前、震后高精度遥感影像对比分析结合现场调查,共获取1047处滑坡,总面积为3.88 km2。在分析滑坡发育分布与影响因素关系的基础上,本文选取了构造因子、地形因子、地质因子及其他因子等9个指标,采用确定性系数(CF)模型、逻辑回归(Logistic)模型以及两种模型耦合分析进行滑坡易发性评价。研究结果表明,坡度、坡向、高程和地层岩性是影响滑坡分布的主要因子;研究区被划分为低易发区(60.72%)、中度易发区(24.18%)、高易发区(9.89%)和极高易发区(5.21%),高-极高易发区基本沿沟谷分布,面积为99 km2,其中熊猫海、老虎海周边均为滑坡极高易发区;采用耦合模型比单一模型评价结果更加合理,其结果可作为景区滑坡防治和分段分时开放的参考依据。
2
中国滑坡灾害严重,区域滑坡灾害预警是防灾减灾的重要手段之一,预警模型是开展区域滑坡灾害预警的关键问题。本文系统开展了基于机器学习的区域滑坡灾害预警模型研究,并以四川省青川县为例,基于近10年地质与气象数据,构建了青川县区域滑坡灾害预警模型并开展实例校验。研究得出如下结论:(1)提出了基于机器学习的区域滑坡灾害预警模型的构建方法,主要包括训练样本集构建、样本学习训练与优化建模、模型保存与预警输出等几个关键步骤。(2)提出了区域滑坡训练样本集的构建方法,即以正样本为基础,在时空约束条件下随机采样获取负样本,最终获得完整的训练样本集。(3)样本学习训练中,以训练样本集的80%作为训练集,20%作为测试集,进行5折交叉验证,采用精确度、ROC曲线和AUC值校验模型准确度和模型泛化能力。采用贝叶斯优化算法进行模型优化。(4)实际预警中,调用训练好的预警模型输出滑坡灾害可能发生的概率。依据概率大小,分级确定预警等级。分级依据为:当输出概率P≥40%且P<60%时,发布黄色预警;当输出概率P≥60%且P<80%时,发布橙色预警;当输出概率P≥80%时,发布红色预警。(5)以青川县为例,构建了青川县区域滑坡训练样本集,采用6种机器学习算法进行模型训练,结果显示随机森林算法表现最好,其准确率最高(0.963),模型无过拟合现象,模型泛化能力最好(AUC=0.986);其次为逻辑回归算法;再次为人工神经网络算法和决策树算法。选取2018年6月26日的青川县日常预警业务进行实例校验。结果显示:当日17处滑坡灾害点中,100%的灾害点全部落入预警区范围内,其中:70.6%的滑坡落在红色预警区内,17.6%的滑坡落在橙色预警区内,11.8%的滑坡落在黄色预警区内。 中国滑坡灾害严重,区域滑坡灾害预警是防灾减灾的重要手段之一,预警模型是开展区域滑坡灾害预警的关键问题。本文系统开展了基于机器学习的区域滑坡灾害预警模型研究,并以四川省青川县为例,基于近10年地质与气象数据,构建了青川县区域滑坡灾害预警模型并开展实例校验。研究得出如下结论:(1)提出了基于机器学习的区域滑坡灾害预警模型的构建方法,主要包括训练样本集构建、样本学习训练与优化建模、模型保存与预警输出等几个关键步骤。(2)提出了区域滑坡训练样本集的构建方法,即以正样本为基础,在时空约束条件下随机采样获取负样本,最终获得完整的训练样本集。(3)样本学习训练中,以训练样本集的80%作为训练集,20%作为测试集,进行5折交叉验证,采用精确度、ROC曲线和AUC值校验模型准确度和模型泛化能力。采用贝叶斯优化算法进行模型优化。(4)实际预警中,调用训练好的预警模型输出滑坡灾害可能发生的概率。依据概率大小,分级确定预警等级。分级依据为:当输出概率P≥40%且P<60%时,发布黄色预警;当输出概率P≥60%且P<80%时,发布橙色预警;当输出概率P≥80%时,发布红色预警。(5)以青川县为例,构建了青川县区域滑坡训练样本集,采用6种机器学习算法进行模型训练,结果显示随机森林算法表现最好,其准确率最高(0.963),模型无过拟合现象,模型泛化能力最好(AUC=0.986);其次为逻辑回归算法;再次为人工神经网络算法和决策树算法。选取2018年6月26日的青川县日常预警业务进行实例校验。结果显示:当日17处滑坡灾害点中,100%的灾害点全部落入预警区范围内,其中:70.6%的滑坡落在红色预警区内,17.6%的滑坡落在橙色预警区内,11.8%的滑坡落在黄色预警区内。
3
随开采深度不断增加, 煤矿冲击矿压灾害形势严峻, 冲击矿压机理、监测预警技术及防控技术的研究对于煤矿安全生产至关重要。论文系统总结了团队多年来研究成果及进展, 提出了动静载叠加诱冲机理, 基于动静载力源和能量主体划分了冲击矿压类型。提出了冲击危险"应力-震动-能量"三场耦合监测原理, 建立了冲击危险应力场-震动场-能量场三场多参量综合监测预警技术体系, 并构建了多参量带权重的时空预警模型, 基于大数据和云平台技术, 开发了冲击矿压风险智能判识与多参量监测预警云平台, 实现冲击危险监测数据与防治措施信息的融合, 提高了冲击危险监测预警效能, 提出了冲击危险强度弱化减冲原理和巷道围岩强弱强结构原理, 并给出了基于动静载的冲击矿压分类监测预警和防治方案。研究成果有力推动了冲击矿压研究进展, 可为深部冲击矿压防治提供重要指导。 随开采深度不断增加, 煤矿冲击矿压灾害形势严峻, 冲击矿压机理、监测预警技术及防控技术的研究对于煤矿安全生产至关重要。论文系统总结了团队多年来研究成果及进展, 提出了动静载叠加诱冲机理, 基于动静载力源和能量主体划分了冲击矿压类型。提出了冲击危险"应力-震动-能量"三场耦合监测原理, 建立了冲击危险应力场-震动场-能量场三场多参量综合监测预警技术体系, 并构建了多参量带权重的时空预警模型, 基于大数据和云平台技术, 开发了冲击矿压风险智能判识与多参量监测预警云平台, 实现冲击危险监测数据与防治措施信息的融合, 提高了冲击危险监测预警效能, 提出了冲击危险强度弱化减冲原理和巷道围岩强弱强结构原理, 并给出了基于动静载的冲击矿压分类监测预警和防治方案。研究成果有力推动了冲击矿压研究进展, 可为深部冲击矿压防治提供重要指导。
4
川藏铁路作为史上修建难度最大的铁路,沿线具有显著的地形高差、强烈的板块活动、密集的深大断裂、频发的山地灾害等恶劣地质环境特点,工程建设面临着复杂多变的地表和地下重大地质安全风险挑战。为深入综合分析川藏铁路可研阶段沿线地质风险,定量评价其对工程的影响,基于川藏铁路沿线翔实的时空数据集及资料,采用三维结构建模、数值统计建模、动力建模、时空建模等方法,进行了地表、地下重大工程地质灾害综合定量风险分析。地表工程地质灾害综合风险分析结果表明:在宏观上,川藏铁路沿线存在3个地表地质灾害高风险区,分别是鲜水河断裂带、金沙江断裂带和东构造结地区。由于川藏铁路采用以隧道为主的设计方案,地表地质灾害的风险大大降低。分别建立了活动断裂、岩爆和大变形等风险评估的普适性模型及综合风险分析模型,以易贡隧道为例,对典型重要隧道全线不同段落断裂活动性、岩爆、大变形等典型地下工程地质风险以及综合风险进行了定量评价。结果表明:川藏铁路沿线的地质灾害、断裂活动、岩爆和大变形等重大工程地质灾害的总体风险等级较高,影响工程安全;定量评估结果可以进一步指导后续的设计与施工的优化和深化。本研究为川藏铁路可行性研究提供了有力的科学支撑,同时也为国内外类似线性工程地质灾害风险分析提供参考。 川藏铁路作为史上修建难度最大的铁路,沿线具有显著的地形高差、强烈的板块活动、密集的深大断裂、频发的山地灾害等恶劣地质环境特点,工程建设面临着复杂多变的地表和地下重大地质安全风险挑战。为深入综合分析川藏铁路可研阶段沿线地质风险,定量评价其对工程的影响,基于川藏铁路沿线翔实的时空数据集及资料,采用三维结构建模、数值统计建模、动力建模、时空建模等方法,进行了地表、地下重大工程地质灾害综合定量风险分析。地表工程地质灾害综合风险分析结果表明:在宏观上,川藏铁路沿线存在3个地表地质灾害高风险区,分别是鲜水河断裂带、金沙江断裂带和东构造结地区。由于川藏铁路采用以隧道为主的设计方案,地表地质灾害的风险大大降低。分别建立了活动断裂、岩爆和大变形等风险评估的普适性模型及综合风险分析模型,以易贡隧道为例,对典型重要隧道全线不同段落断裂活动性、岩爆、大变形等典型地下工程地质风险以及综合风险进行了定量评价。结果表明:川藏铁路沿线的地质灾害、断裂活动、岩爆和大变形等重大工程地质灾害的总体风险等级较高,影响工程安全;定量评估结果可以进一步指导后续的设计与施工的优化和深化。本研究为川藏铁路可行性研究提供了有力的科学支撑,同时也为国内外类似线性工程地质灾害风险分析提供参考。
5
白家包滑坡是具有滞后性“阶跃型”变形的滑坡代表,通过定性分析初步认为,库水位下降是白家包滑坡变形的主要影响因素,其影响程度大于降雨。为了进一步明确白家包滑坡变形对库水位波动和降雨的响应程度,本文根据库水位每年波动情况,将其划分为5个阶段,运用皮尔逊相关系数法对白家包滑坡变形与库水位、降雨的相关性进行定量计算,计算结果为各监测点变形与库水位、降雨都在5~6月份综合计算中相关程度最高,且变形与库水位最大相关性系数绝对值为0.75左右,大于变形与降雨的最大相关性系数(0.45左右)。为了充分消除库水位与降雨之间的相互影响,运用皮尔逊相关系数分别计算白家包滑坡变形与库水位、降雨的净相关性系数,最后将得到的净相关性系数与新建GPS自动监测点在2017~2018年的日变形位移和库水位、降雨对比分析,进行相关性验证。结果表明:白家包滑坡的变形对库水位下降的响应程度大于变形对降雨的响应程度,在库水位快速下降阶段响应程度最高,且与新建的GPS自动监测点监测结果吻合度较高。此结果与定性分析结果和皮尔逊相关系数法分析结果一致,该研究可对滑坡变形影响因素的定量分析提供科学的依据。 白家包滑坡是具有滞后性“阶跃型”变形的滑坡代表,通过定性分析初步认为,库水位下降是白家包滑坡变形的主要影响因素,其影响程度大于降雨。为了进一步明确白家包滑坡变形对库水位波动和降雨的响应程度,本文根据库水位每年波动情况,将其划分为5个阶段,运用皮尔逊相关系数法对白家包滑坡变形与库水位、降雨的相关性进行定量计算,计算结果为各监测点变形与库水位、降雨都在5~6月份综合计算中相关程度最高,且变形与库水位最大相关性系数绝对值为0.75左右,大于变形与降雨的最大相关性系数(0.45左右)。为了充分消除库水位与降雨之间的相互影响,运用皮尔逊相关系数分别计算白家包滑坡变形与库水位、降雨的净相关性系数,最后将得到的净相关性系数与新建GPS自动监测点在2017~2018年的日变形位移和库水位、降雨对比分析,进行相关性验证。结果表明:白家包滑坡的变形对库水位下降的响应程度大于变形对降雨的响应程度,在库水位快速下降阶段响应程度最高,且与新建的GPS自动监测点监测结果吻合度较高。此结果与定性分析结果和皮尔逊相关系数法分析结果一致,该研究可对滑坡变形影响因素的定量分析提供科学的依据。
6
工程作用和气候转暖影响加剧了工程下部多年冻土的退化,导致冻土工程稳定性发生显著变化。本文从气候转暖和工程活动下多年冻土变化和冻融灾害的视角探讨了气候转暖与工程稳定性的关系,给出了青藏高原气候转暖下活动层厚度、冻土温度等变化和青藏公路和青藏铁路工程下部多年冻土上限、冻土温度和路基变形等特征。同时,系统梳理了青藏高原冻土工程防治冻土融化的工程技术措施,讨论了未来气候变暖下青藏高原多年冻土的变化特征及其对冻土工程服役性的影响。青藏高原多年冻土在过去数十年来发生了不同程度的退化,工程作用加速了工程下部多年冻土退化,严重影响工程稳定性。青藏铁路采取了冷却路基、降低多年冻土温度的技术措施,但冻土工程仅能适应气候变暖1 ℃的情况。未来气候变暖1.5 ℃,青藏铁路冻土工程的补强措施需尽早谋划。 工程作用和气候转暖影响加剧了工程下部多年冻土的退化,导致冻土工程稳定性发生显著变化。本文从气候转暖和工程活动下多年冻土变化和冻融灾害的视角探讨了气候转暖与工程稳定性的关系,给出了青藏高原气候转暖下活动层厚度、冻土温度等变化和青藏公路和青藏铁路工程下部多年冻土上限、冻土温度和路基变形等特征。同时,系统梳理了青藏高原冻土工程防治冻土融化的工程技术措施,讨论了未来气候变暖下青藏高原多年冻土的变化特征及其对冻土工程服役性的影响。青藏高原多年冻土在过去数十年来发生了不同程度的退化,工程作用加速了工程下部多年冻土退化,严重影响工程稳定性。青藏铁路采取了冷却路基、降低多年冻土温度的技术措施,但冻土工程仅能适应气候变暖1 ℃的情况。未来气候变暖1.5 ℃,青藏铁路冻土工程的补强措施需尽早谋划。
7
岩爆和冲击地压原来在自然界并不存在,完全是由于人类进行深部地下空间利用、深部矿产资源开采等工程建设时诱发产生的,两者同属于最典型的深部工程地质灾害。由于历史原因,岩爆和冲击地压长期存在概念混用的情况。本文比较详细地综述了岩爆和冲击地压领域国内早期的研究历程,系统解析了岩爆和冲击地压之间存在的差异。在研究对象(硬岩和煤的承载强度、储能及释能能力、弹脆性)、受力条件(地应力、扰动应力)和边界条件(开挖和开采方法及工序、扰动范围和时效性等)方面,岩爆和冲击地压均存在根本区别;在表观现象、限定对象、研究对象、赋存条件、行业领域、工程建设方法、工程建设目的、要求及支护性质、诱发机理、倾向性判据、划分类型、划分等级、等级评价方法等方面,岩爆和冲击地压也存在很大差异。综上,岩爆和冲击地压是并列的两类地质体动力破坏现象,两者之间不存在隶属关系。在综合参考前人研究的基础上,分别给出了岩爆和冲击地压各自的定义和内涵。岩爆的定义为发生在深埋隧道(隧洞)、深部矿山巷道及矿柱部位的硬岩弹射、爆裂或崩落现象,伴随不同程度声响;冲击地压定义为发生在深部煤矿中煤抛出现象,释放出不同程度的动能,严重时往往伴随震动、巨响、气浪或冲击波。从煤动力冲击破坏的现象与名称统一的角度考虑,建议用“煤冲击”代替“冲击地压”概念。在此基础上,详细阐述了岩爆和冲击地压研究中的7点认识。最后,从研究对象、受力条件和边界条件等3个方面讨论了岩爆和冲击地压的关键机理问题,即从静动(或动静)组合加载力学的角度研究岩爆和冲击地压,符合深部地质体破坏的全受力路径,同时要从能量守恒的角度研究从静态到动态的转换问题。在岩爆和冲击地压的机理分析、预测预报、监测报警、调控防治中,都要科学认识各影响因素之间的逻辑关系和辩证关系(注:本文因为无法找到与冲击地压契合的英文名称,在英文摘要中同时存在“coal burst”和“coal bump”两种表达)。 岩爆和冲击地压原来在自然界并不存在,完全是由于人类进行深部地下空间利用、深部矿产资源开采等工程建设时诱发产生的,两者同属于最典型的深部工程地质灾害。由于历史原因,岩爆和冲击地压长期存在概念混用的情况。本文比较详细地综述了岩爆和冲击地压领域国内早期的研究历程,系统解析了岩爆和冲击地压之间存在的差异。在研究对象(硬岩和煤的承载强度、储能及释能能力、弹脆性)、受力条件(地应力、扰动应力)和边界条件(开挖和开采方法及工序、扰动范围和时效性等)方面,岩爆和冲击地压均存在根本区别;在表观现象、限定对象、研究对象、赋存条件、行业领域、工程建设方法、工程建设目的、要求及支护性质、诱发机理、倾向性判据、划分类型、划分等级、等级评价方法等方面,岩爆和冲击地压也存在很大差异。综上,岩爆和冲击地压是并列的两类地质体动力破坏现象,两者之间不存在隶属关系。在综合参考前人研究的基础上,分别给出了岩爆和冲击地压各自的定义和内涵。岩爆的定义为发生在深埋隧道(隧洞)、深部矿山巷道及矿柱部位的硬岩弹射、爆裂或崩落现象,伴随不同程度声响;冲击地压定义为发生在深部煤矿中煤抛出现象,释放出不同程度的动能,严重时往往伴随震动、巨响、气浪或冲击波。从煤动力冲击破坏的现象与名称统一的角度考虑,建议用“煤冲击”代替“冲击地压”概念。在此基础上,详细阐述了岩爆和冲击地压研究中的7点认识。最后,从研究对象、受力条件和边界条件等3个方面讨论了岩爆和冲击地压的关键机理问题,即从静动(或动静)组合加载力学的角度研究岩爆和冲击地压,符合深部地质体破坏的全受力路径,同时要从能量守恒的角度研究从静态到动态的转换问题。在岩爆和冲击地压的机理分析、预测预报、监测报警、调控防治中,都要科学认识各影响因素之间的逻辑关系和辩证关系(注:本文因为无法找到与冲击地压契合的英文名称,在英文摘要中同时存在“coal burst”和“coal bump”两种表达)。
8
基于斋藤曲线的滑坡时间预报是滑坡一定会发生的情况,而实际滑坡的孕育发展具有显然的多样性和阶段性。为了走出斋藤曲线的束缚或局限,根据诸多滑坡累积变形-时间曲线的归纳分析,作者把滑坡累积变形划分为缓变趋稳型、阶跃演进型和失稳突发型3种。缓变、阶跃和突发型滑坡变形动态可以顺次转化,且前两者可以相互转化,但一般情况下突发型不可以反向转化,并分别举例进行了说明。滑坡处于开放的地质环境系统中,滑坡孕育发展与其边界条件、成分结构、初始状态和激发因素等作用及其时空变化密切相关。滑坡的物理本质起源于斜坡岩土体内部应力作用的失衡,最主要的动力来源是重力作用失衡。突发型滑坡意味着滑坡必然发生,可认为滑坡进入“自动态”。阶跃型滑坡对外界因素作用敏感,可认为滑坡处于应激反应的“他动态”。趋稳型滑坡除非遭遇超常的外界激发因素作用,滑坡处于向整体稳定发展但局部存在变形调整的“微动态”。由于滑坡内外环境处于持续变化过程中,追求滑坡的“精准”预报既无可能也无必要,问题的关键是提高服务防灾减灾的有效性。 基于斋藤曲线的滑坡时间预报是滑坡一定会发生的情况,而实际滑坡的孕育发展具有显然的多样性和阶段性。为了走出斋藤曲线的束缚或局限,根据诸多滑坡累积变形-时间曲线的归纳分析,作者把滑坡累积变形划分为缓变趋稳型、阶跃演进型和失稳突发型3种。缓变、阶跃和突发型滑坡变形动态可以顺次转化,且前两者可以相互转化,但一般情况下突发型不可以反向转化,并分别举例进行了说明。滑坡处于开放的地质环境系统中,滑坡孕育发展与其边界条件、成分结构、初始状态和激发因素等作用及其时空变化密切相关。滑坡的物理本质起源于斜坡岩土体内部应力作用的失衡,最主要的动力来源是重力作用失衡。突发型滑坡意味着滑坡必然发生,可认为滑坡进入“自动态”。阶跃型滑坡对外界因素作用敏感,可认为滑坡处于应激反应的“他动态”。趋稳型滑坡除非遭遇超常的外界激发因素作用,滑坡处于向整体稳定发展但局部存在变形调整的“微动态”。由于滑坡内外环境处于持续变化过程中,追求滑坡的“精准”预报既无可能也无必要,问题的关键是提高服务防灾减灾的有效性。
9
引江济淮河(航)道工程引江济巢段和江淮沟通段地层连续分布弱膨胀土和具有崩解性的砂软岩,为资源化利用河道开挖弃渣开发非膨胀土来源,实验研究利用崩解性软岩改良弱膨胀土的可行性。研究表明:崩解性砂软岩易粉碎、无膨胀性、天然含水率低,具备作为改性材料的条件;弱膨胀土掺入崩解性砂岩后其膨胀率、膨胀力、最优含水率与掺入量负相关,最大干密度、渗透系数与掺入量正相关;弱膨胀土掺入崩解性砂岩后其内摩擦角随掺量呈反S型曲线规律发展,黏聚力随掺量增加近似呈二次曲线规律衰减,掺量高于30%时,改良土的抗剪强度可能低于天然弱膨胀土;在砂岩掺量及粒径范围相同情况下,砂岩粗颗粒含量越高,改良土的黏聚力越高和摩擦角越低;砂岩改良土在干湿循环条件下的强度稳定性得到改善,且水化砂岩的改良效果优于机碎砂岩。以弱膨胀土改良后强度不损失为标准,确定砂岩合理掺量为30%,并须合理控制砂岩改良土施工过程中机碎砂岩中粗粒组的含量。 引江济淮河(航)道工程引江济巢段和江淮沟通段地层连续分布弱膨胀土和具有崩解性的砂软岩,为资源化利用河道开挖弃渣开发非膨胀土来源,实验研究利用崩解性软岩改良弱膨胀土的可行性。研究表明:崩解性砂软岩易粉碎、无膨胀性、天然含水率低,具备作为改性材料的条件;弱膨胀土掺入崩解性砂岩后其膨胀率、膨胀力、最优含水率与掺入量负相关,最大干密度、渗透系数与掺入量正相关;弱膨胀土掺入崩解性砂岩后其内摩擦角随掺量呈反S型曲线规律发展,黏聚力随掺量增加近似呈二次曲线规律衰减,掺量高于30%时,改良土的抗剪强度可能低于天然弱膨胀土;在砂岩掺量及粒径范围相同情况下,砂岩粗颗粒含量越高,改良土的黏聚力越高和摩擦角越低;砂岩改良土在干湿循环条件下的强度稳定性得到改善,且水化砂岩的改良效果优于机碎砂岩。以弱膨胀土改良后强度不损失为标准,确定砂岩合理掺量为30%,并须合理控制砂岩改良土施工过程中机碎砂岩中粗粒组的含量。
10
以西安地铁6号线区间隧道浅埋暗挖施工穿越地裂缝场地为研究工程背景,考虑地裂缝场地的特殊性构建了基于传统CRD工法的施工优化工法,并对传统CRD工法和优化CRD工法施工开挖过程进行了三维动态的有限元数值模拟,结合现场监测试验数据,对比分析了两种工法下地裂缝场地地表沉降变形规律和地铁隧道受力变形特征。结果表明:两种CRD工法下地表沉降变形均呈反S型,大致可分为开挖前微小变形、开挖时急剧下沉变形及开挖后平稳变形等3个阶段;与掌子面距离越近,地面沉降速率越大;与传统CRD工法相比,优化CRD工法通过适当增加锁脚、锁腰锚杆数量,提高初支喷混强度,达到简化临时支护、扩大下台阶施工面、方便临时支护施作拆除和提升初支闭合、临时中隔壁拆除速度的目的,整体施工速度提升1.37倍,地表最大沉降量降低52.96%,影响范围减少22.17%,隧道拱顶最大沉降量降低54.53%;优化CRD工法具有施工速度快、影响范围小以及地表与结构沉降控制好等优点,不仅可以提高工程效益,而且可以保障施工安全性和隧道建成使用的可靠性。研究结果可为西安市及其他地裂缝发育区地裂缝场地地铁隧道暗挖施工提供科学参考和借鉴。 以西安地铁6号线区间隧道浅埋暗挖施工穿越地裂缝场地为研究工程背景,考虑地裂缝场地的特殊性构建了基于传统CRD工法的施工优化工法,并对传统CRD工法和优化CRD工法施工开挖过程进行了三维动态的有限元数值模拟,结合现场监测试验数据,对比分析了两种工法下地裂缝场地地表沉降变形规律和地铁隧道受力变形特征。结果表明:两种CRD工法下地表沉降变形均呈反S型,大致可分为开挖前微小变形、开挖时急剧下沉变形及开挖后平稳变形等3个阶段;与掌子面距离越近,地面沉降速率越大;与传统CRD工法相比,优化CRD工法通过适当增加锁脚、锁腰锚杆数量,提高初支喷混强度,达到简化临时支护、扩大下台阶施工面、方便临时支护施作拆除和提升初支闭合、临时中隔壁拆除速度的目的,整体施工速度提升1.37倍,地表最大沉降量降低52.96%,影响范围减少22.17%,隧道拱顶最大沉降量降低54.53%;优化CRD工法具有施工速度快、影响范围小以及地表与结构沉降控制好等优点,不仅可以提高工程效益,而且可以保障施工安全性和隧道建成使用的可靠性。研究结果可为西安市及其他地裂缝发育区地裂缝场地地铁隧道暗挖施工提供科学参考和借鉴。
11
为了定量评价西部矿区巨厚煤层分层开采过程中弱胶结覆岩采动裂隙网络的发育特征,通过分形几何理论和UDEC离散元数值模拟相结合的方法分析了采动覆岩裂隙的分形演化规律。研究结果表明:西部矿区巨厚煤层在分层开采条件下覆岩发育和扩展具有良好的自相似性,分形维数D在0.461~1.488之间;巨厚煤层在分层开采条件下覆岩裂隙分形演化规律可以划分为快速升维阶段、快速降维阶段、平稳稳维阶段、周期性变维阶段等4个阶段,各阶段分形维数D与开采次数分别满足对数关系、线性关系以及二次函数关系;巨厚煤层在分层开采条件下,分形维数D拟合曲线表现出了高度的相似性,具有一定的周期性,均呈幂函数关系。研究结果可以对西部矿区的安全开采和水资源的保护提供科学依据和技术参考。 为了定量评价西部矿区巨厚煤层分层开采过程中弱胶结覆岩采动裂隙网络的发育特征,通过分形几何理论和UDEC离散元数值模拟相结合的方法分析了采动覆岩裂隙的分形演化规律。研究结果表明:西部矿区巨厚煤层在分层开采条件下覆岩发育和扩展具有良好的自相似性,分形维数D在0.461~1.488之间;巨厚煤层在分层开采条件下覆岩裂隙分形演化规律可以划分为快速升维阶段、快速降维阶段、平稳稳维阶段、周期性变维阶段等4个阶段,各阶段分形维数D与开采次数分别满足对数关系、线性关系以及二次函数关系;巨厚煤层在分层开采条件下,分形维数D拟合曲线表现出了高度的相似性,具有一定的周期性,均呈幂函数关系。研究结果可以对西部矿区的安全开采和水资源的保护提供科学依据和技术参考。
12
针对不同养护龄期对于粉煤灰水泥土抗剪强度影响的问题,采用不固结不排水三轴剪切试验从宏观力学的角度分析养护龄期对粉煤灰水泥土的影响,结合SEM试验和XRD试验从微观角度分析试样内部结构与物质成分。试验结果表明:从宏观角度分析,粉煤灰水泥土的应力-应变曲线呈现应变软化型,试样的抗剪强度随养护龄期的增加逐渐增大且28 d的抗剪强度最大,同时,由于试样内部各物质之间的反应随养护龄期的增加而持续进行,龄期越长试样内部各物质之间的胶结作用越强,致使试样的内摩擦角和黏聚力随养护龄期逐渐增大;从微观角度分析,试样内部生成的结晶物质(钙矾石)与胶凝物质(C-S-H凝胶)等填充试样内部的大孔隙且相互黏结,导致试样愈加密实,抗剪强度增大。本文旨在为粉煤灰等材料固化黄土的抗剪强度提供试验依据,为粉煤灰等工业副产品在工程中的应用提供参考,对粉煤灰的利用和环境保护具有参考意义。 针对不同养护龄期对于粉煤灰水泥土抗剪强度影响的问题,采用不固结不排水三轴剪切试验从宏观力学的角度分析养护龄期对粉煤灰水泥土的影响,结合SEM试验和XRD试验从微观角度分析试样内部结构与物质成分。试验结果表明:从宏观角度分析,粉煤灰水泥土的应力-应变曲线呈现应变软化型,试样的抗剪强度随养护龄期的增加逐渐增大且28 d的抗剪强度最大,同时,由于试样内部各物质之间的反应随养护龄期的增加而持续进行,龄期越长试样内部各物质之间的胶结作用越强,致使试样的内摩擦角和黏聚力随养护龄期逐渐增大;从微观角度分析,试样内部生成的结晶物质(钙矾石)与胶凝物质(C-S-H凝胶)等填充试样内部的大孔隙且相互黏结,导致试样愈加密实,抗剪强度增大。本文旨在为粉煤灰等材料固化黄土的抗剪强度提供试验依据,为粉煤灰等工业副产品在工程中的应用提供参考,对粉煤灰的利用和环境保护具有参考意义。
13
2017年10月30日,位于秭归县归州镇香溪河右岸的盐关滑坡发生整体滑移破坏,成为近年来三峡库区为数不多的整体破坏变形的滑坡之一。根据现场应急调查,滑坡在不到3天的时间内经历了预警直至完全破坏的过程。本文以盐关滑坡为实例,根据滑坡失稳破坏特征结合有效应力原理提出了孔隙水压力变化速率条件下滑坡失稳破坏的模式,分析出滑坡体内的孔隙水压力对滑坡破坏的影响,最后通过有限元模拟软件予以验证。利用Geo-Studio岩土仿真软件SEEP/W模块模拟盐关滑坡在降雨入渗作用下的渗流场,结合滑坡变形期直至破坏时的实际库水位值计算出孔隙水压力随时间变化曲线,并且将所得结果应用到Slope/W模块,计算出滑坡的安全系数随时间的变化曲线,从而验证出滑坡失稳破坏的主要原因是滑坡内部土体在降雨和库水位的作用下达到饱和后,孔隙水压力激增所导致的。 2017年10月30日,位于秭归县归州镇香溪河右岸的盐关滑坡发生整体滑移破坏,成为近年来三峡库区为数不多的整体破坏变形的滑坡之一。根据现场应急调查,滑坡在不到3天的时间内经历了预警直至完全破坏的过程。本文以盐关滑坡为实例,根据滑坡失稳破坏特征结合有效应力原理提出了孔隙水压力变化速率条件下滑坡失稳破坏的模式,分析出滑坡体内的孔隙水压力对滑坡破坏的影响,最后通过有限元模拟软件予以验证。利用Geo-Studio岩土仿真软件SEEP/W模块模拟盐关滑坡在降雨入渗作用下的渗流场,结合滑坡变形期直至破坏时的实际库水位值计算出孔隙水压力随时间变化曲线,并且将所得结果应用到Slope/W模块,计算出滑坡的安全系数随时间的变化曲线,从而验证出滑坡失稳破坏的主要原因是滑坡内部土体在降雨和库水位的作用下达到饱和后,孔隙水压力激增所导致的。
14
为探究纳米SiO2和石灰对黄泛区粉土的改良效果,通过击实试验、无侧限抗压强度试验、扫描电镜试验和XRF试验等系列试验,研究纳米SiO2和石灰掺量对黄泛区粉土压实性、抗压强度、水稳性等力学特性的影响,分析改良粉土的微观结构及固化机理。结果表明:纳米SiO2改良土的最大干密度和最优含水率随纳米SiO2掺量的增加而提高,纳米SiO2改良土中掺加石灰会降低最大干密度,但会提高最优含水率;纳米SiO2与石灰联合使用改良效果优于单独掺入纳米SiO2,1.5%纳米SiO2-2%石灰改良土的无侧限抗压强度、黏聚力和内摩擦角提升最为显著;与素土和纳米SiO2改良土相比,纳米SiO2-石灰改良土的水稳性得到显著改善;在纳米SiO2改良土中,纳米SiO2主要起到填充土颗粒之间孔隙的作用,纳米SiO2与石灰联合使用可在土中形成胶结物质、发挥黏结与填充作用、大幅提高土的强度。 为探究纳米SiO2和石灰对黄泛区粉土的改良效果,通过击实试验、无侧限抗压强度试验、扫描电镜试验和XRF试验等系列试验,研究纳米SiO2和石灰掺量对黄泛区粉土压实性、抗压强度、水稳性等力学特性的影响,分析改良粉土的微观结构及固化机理。结果表明:纳米SiO2改良土的最大干密度和最优含水率随纳米SiO2掺量的增加而提高,纳米SiO2改良土中掺加石灰会降低最大干密度,但会提高最优含水率;纳米SiO2与石灰联合使用改良效果优于单独掺入纳米SiO2,1.5%纳米SiO2-2%石灰改良土的无侧限抗压强度、黏聚力和内摩擦角提升最为显著;与素土和纳米SiO2改良土相比,纳米SiO2-石灰改良土的水稳性得到显著改善;在纳米SiO2改良土中,纳米SiO2主要起到填充土颗粒之间孔隙的作用,纳米SiO2与石灰联合使用可在土中形成胶结物质、发挥黏结与填充作用、大幅提高土的强度。
15
泥石流灾害是青藏高原地区最为发育的灾害类型之一,因其暴发突然、运动过程剧烈和破坏性强的特点而对川藏铁路工程建设和生命财产安全构成一定的威胁。地质灾害危险性评估是防灾减灾管理和防治环节中的有效措施之一,为合理量化线路沿程泥石流灾害危险性空间分布特征,研究以林芝市波密县境内的川藏铁路孜热—波密段为试验区,应用基于贝叶斯优化算法的随机森林和梯度提升树模型对该线路段的泥石流危险性进行定量化计算和危险性区划的判定。模型的输入信息包括172个历史泥石流点和11个特征参数,输出信息为每个预测单元泥石流暴发的危险性概率。最后,利用ROC-AUC方法对两种预测模型进行评估结果的检验。计算结果显示,在TBOR与TBOG模型中,川藏铁路孜然—波密线路段总体的泥石流危险性水平较高,两种模型在较高-高危险性区间内的危险分区比例分别达56.439%和66.580%,对应的灾害点密度分别为最高的12.577处/(102 km2)和12.940处/(102km2)。相比于TBOG模型的ROC-AUC值,TBOR模型的计算结果为0.89,高于TBOR的0.83。因此,TBOR模型具有更好的预测精度。本文的研究成果可为川藏铁路沿线防灾减灾防护工程建设和其他线路段危险性评价提供必要的参考。 泥石流灾害是青藏高原地区最为发育的灾害类型之一,因其暴发突然、运动过程剧烈和破坏性强的特点而对川藏铁路工程建设和生命财产安全构成一定的威胁。地质灾害危险性评估是防灾减灾管理和防治环节中的有效措施之一,为合理量化线路沿程泥石流灾害危险性空间分布特征,研究以林芝市波密县境内的川藏铁路孜热—波密段为试验区,应用基于贝叶斯优化算法的随机森林和梯度提升树模型对该线路段的泥石流危险性进行定量化计算和危险性区划的判定。模型的输入信息包括172个历史泥石流点和11个特征参数,输出信息为每个预测单元泥石流暴发的危险性概率。最后,利用ROC-AUC方法对两种预测模型进行评估结果的检验。计算结果显示,在TBOR与TBOG模型中,川藏铁路孜然—波密线路段总体的泥石流危险性水平较高,两种模型在较高-高危险性区间内的危险分区比例分别达56.439%和66.580%,对应的灾害点密度分别为最高的12.577处/(102 km2)和12.940处/(102km2)。相比于TBOG模型的ROC-AUC值,TBOR模型的计算结果为0.89,高于TBOR的0.83。因此,TBOR模型具有更好的预测精度。本文的研究成果可为川藏铁路沿线防灾减灾防护工程建设和其他线路段危险性评价提供必要的参考。
16
膨胀土是一种具有显著的吸水膨胀和失水收缩特性的特殊黏性土,暴露于大气中的膨胀土边坡处于连续的干湿循环过程中,在降雨条件下极不稳定。基于饱和-非饱和渗流理论,对降雨条件下膨胀土边坡的非饱和渗流过程和吸湿过程进行了数值模拟。编写了相应的FORTRAN语言程序,考虑了渗流过程中基质吸力变化、渗流软化和吸湿膨胀的影响,分析了强度衰减、渗流软化和湿胀对膨胀土边坡整体稳定性的影响。结果表明,在降雨作用下,经过多次干湿循环后,膨胀土边坡的破坏模式为浅层牵引式崩塌,破坏面位于风化区,与普通黏性土边坡的深层圆弧滑坡有较大区别。在考虑湿胀软化效应后,边坡最大位移增大了一个数量级,稳定性系数显著降低,膨胀性是边坡浅层滑坡的主要原因。研究结果较好地解释了膨胀土滑坡特有的牵引性、反复滑动性和浅层破坏性。 膨胀土是一种具有显著的吸水膨胀和失水收缩特性的特殊黏性土,暴露于大气中的膨胀土边坡处于连续的干湿循环过程中,在降雨条件下极不稳定。基于饱和-非饱和渗流理论,对降雨条件下膨胀土边坡的非饱和渗流过程和吸湿过程进行了数值模拟。编写了相应的FORTRAN语言程序,考虑了渗流过程中基质吸力变化、渗流软化和吸湿膨胀的影响,分析了强度衰减、渗流软化和湿胀对膨胀土边坡整体稳定性的影响。结果表明,在降雨作用下,经过多次干湿循环后,膨胀土边坡的破坏模式为浅层牵引式崩塌,破坏面位于风化区,与普通黏性土边坡的深层圆弧滑坡有较大区别。在考虑湿胀软化效应后,边坡最大位移增大了一个数量级,稳定性系数显著降低,膨胀性是边坡浅层滑坡的主要原因。研究结果较好地解释了膨胀土滑坡特有的牵引性、反复滑动性和浅层破坏性。
17
以三峡库区巫山轿顶峰2号滑坡为例,结合库水位变化、地质环境条件资料,通过现场调查测绘、无人机航空摄影测量、工程地质钻探、地表及深部位移监测等方法,详细分析了该滑坡的变形特征、成因机制与发展趋势。该滑坡体积约250×104 m3,为大型单斜顺层新生岩质滑坡。滑坡前后缘高差约380 m,前缘剪出口高陡临空,位于库区蓄水位以下。深部监测数据显示消落带发育两条滑动错动面,分别位于距坡面深度12.0~17.0 m和25.0~30.0 m之间。滑坡目前处于蠕滑变形阶段,受地形地貌、地层结构、消落带劣化以及水的影响,垂直方向变形持续增大,前部劣化带发生崩滑破坏失稳可能性较大,并且存在滑坡涌浪灾害链风险。建议持续开展库区消落带劣化系统观测研究,提升库区新生滑坡灾害识别与预警能力。 以三峡库区巫山轿顶峰2号滑坡为例,结合库水位变化、地质环境条件资料,通过现场调查测绘、无人机航空摄影测量、工程地质钻探、地表及深部位移监测等方法,详细分析了该滑坡的变形特征、成因机制与发展趋势。该滑坡体积约250×104 m3,为大型单斜顺层新生岩质滑坡。滑坡前后缘高差约380 m,前缘剪出口高陡临空,位于库区蓄水位以下。深部监测数据显示消落带发育两条滑动错动面,分别位于距坡面深度12.0~17.0 m和25.0~30.0 m之间。滑坡目前处于蠕滑变形阶段,受地形地貌、地层结构、消落带劣化以及水的影响,垂直方向变形持续增大,前部劣化带发生崩滑破坏失稳可能性较大,并且存在滑坡涌浪灾害链风险。建议持续开展库区消落带劣化系统观测研究,提升库区新生滑坡灾害识别与预警能力。
18
颗粒间的孔隙分布特征从本质上控制着马兰黄土的宏观结构,影响马兰黄土的强度特性。马兰黄土的微观结果分析已逐渐成为研究黄土基本特性的一个新方向。本文通过固结实验、扫描电镜和ImageJ图像分析软件对赵家岸滑坡地区马兰黄土的孔隙分布和变形特性进行分析。首先确定了适合ImageJ图像分析的扫描电镜二维照片的阈值和图像拍摄最佳倍数;获取了原状马兰黄土在不同含水量固结试验前后的孔隙数量和孔隙面积的分布特征;揭示了大、中架空孔隙为黄土固结过程中的主要变形区;建立了马兰黄土孔隙中大架空孔隙、中架空孔隙和小架空孔隙的逐步破坏模式;明确了水对孔隙破坏的促进作用,当含水量增加到液限范围时,大、中型架空孔隙会出现加速的破坏现象。 颗粒间的孔隙分布特征从本质上控制着马兰黄土的宏观结构,影响马兰黄土的强度特性。马兰黄土的微观结果分析已逐渐成为研究黄土基本特性的一个新方向。本文通过固结实验、扫描电镜和ImageJ图像分析软件对赵家岸滑坡地区马兰黄土的孔隙分布和变形特性进行分析。首先确定了适合ImageJ图像分析的扫描电镜二维照片的阈值和图像拍摄最佳倍数;获取了原状马兰黄土在不同含水量固结试验前后的孔隙数量和孔隙面积的分布特征;揭示了大、中架空孔隙为黄土固结过程中的主要变形区;建立了马兰黄土孔隙中大架空孔隙、中架空孔隙和小架空孔隙的逐步破坏模式;明确了水对孔隙破坏的促进作用,当含水量增加到液限范围时,大、中型架空孔隙会出现加速的破坏现象。
19
国家经济一体化需求推动了城市交通网络的蓬勃发展,众多水下盾构隧道工程应运而生。特别是进入21世纪以来,一系列长距离越江跨海隧道的建成和投运标志着我国水下盾构施工成套关键技术取得了显著进步。为促进复杂困难地层盾构掘进技术发展,推动越江跨海隧道施工效率提升,本文以近年来已建和在建的代表性大型水下隧道工程为研究对象,从隧道地质环境、盾构施工技术、工程项目管理等多个角度出发,概述了南京长江隧道、济南黄河隧道、南京地铁10号线越江隧道、苏通GIL综合管廊工程、厦门地铁2号线海底隧道等长距离高水压盾构隧道的工程问题和技术难点,梳理了高磨蚀性砂卵石地层、高黏粒粉质黏土地层、高水压强渗透性地层、江底富含沼气地层、海域密集孤石群地层等复杂地质条件下的水下隧道施工成套关键技术,分析了越江跨海隧道工程地质环境复杂化、盾构设备多样化、掘进施工智能化的未来发展趋势。相关研究成果可为后续复杂地质条件下水下盾构隧道工程的勘察、设计、施工等提供理论依据和技术支撑。 国家经济一体化需求推动了城市交通网络的蓬勃发展,众多水下盾构隧道工程应运而生。特别是进入21世纪以来,一系列长距离越江跨海隧道的建成和投运标志着我国水下盾构施工成套关键技术取得了显著进步。为促进复杂困难地层盾构掘进技术发展,推动越江跨海隧道施工效率提升,本文以近年来已建和在建的代表性大型水下隧道工程为研究对象,从隧道地质环境、盾构施工技术、工程项目管理等多个角度出发,概述了南京长江隧道、济南黄河隧道、南京地铁10号线越江隧道、苏通GIL综合管廊工程、厦门地铁2号线海底隧道等长距离高水压盾构隧道的工程问题和技术难点,梳理了高磨蚀性砂卵石地层、高黏粒粉质黏土地层、高水压强渗透性地层、江底富含沼气地层、海域密集孤石群地层等复杂地质条件下的水下隧道施工成套关键技术,分析了越江跨海隧道工程地质环境复杂化、盾构设备多样化、掘进施工智能化的未来发展趋势。相关研究成果可为后续复杂地质条件下水下盾构隧道工程的勘察、设计、施工等提供理论依据和技术支撑。
  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 共:9页