钙质砂破碎过程及其微观机制试验研究

张丙树 顾凯 李金文 唐朝生 施斌 李天斌

张丙树,顾凯,李金文,等.2020.钙质砂破碎过程及其微观机制试验研究[J].工程地质学报,28(4):725-733.doi:10.13544/j.cnki.jeg. 2019-312
引用本文: 张丙树,顾凯,李金文,等.2020.钙质砂破碎过程及其微观机制试验研究[J].工程地质学报,28(4):725-733.doi:10.13544/j.cnki.jeg. 2019-312
Zhang Bingshu,Gu Kai,Li Jinwen,et al.2020.Study on crushing process and microscopic mechanism of calcareous sand[J].Journal of Engineering Geology,28(4):725-733.doi: 10.13544/j.cnki.jeg.2019-312
Citation: Zhang Bingshu,Gu Kai,Li Jinwen,et al.2020.Study on crushing process and microscopic mechanism of calcareous sand[J].Journal of Engineering Geology,28(4):725-733.doi: 10.13544/j.cnki.jeg.2019-312

钙质砂破碎过程及其微观机制试验研究

doi: 10.13544/j.cnki.jeg.2019-312
基金项目: 

国家自然科学青年基金 41502274

南京大学技术创新基金重点项目,地质灾害防治与地质环境保护国家重点实验室开放基金 SKLGP2016K010

国家自然科学基金面上项目 41977217

详细信息
    作者简介:

    张丙树(1996-),男,硕士生,主要从事海洋工程地质研究. E-mail: MF1729033@nju.edu.cn

    通讯作者:

    顾凯(1987-),男,博士,副教授,主要从事环境工程地质研究. E-mail: gukai@nju.edu.cn

  • 中图分类号: P642.3

STUDY ON CRUSHING PROCESS AND MICROSCOPIC MECHANISM OF CALCAREOUS SAND

Funds: 

This research is supported by the Youth Program of National Natural Science Foundation of China 41502274

The Key Project of Nanjing University Technology Innovation Fund, Open Foundation of State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection, Chengdu University of Technology SKLGP2016K010

The National Natural Science Foundation of China 41977217

  • 摘要: 为了掌握南海钙质砂压缩变形特征及其微观机制,对3种不同粒组(S1:1.43~2mm、S2:0.5~1mm、S3:0.5~2mm)的钙质砂进行100~3200kPa压力范围的压缩试验,利用自制的砂土微观结构提取装置和图像处理软件(PCAS)获得并分析了钙质砂压缩过程中微观结构。结果表明:(1)钙质砂的大小、形状和级配对颗粒的破碎具有显著影响,当压力较低时(<800kPa),粒径较大的S1组以砂颗粒棱角破碎为主;粒径较小的S2组没有明显破裂,相对规则的颗粒形态使S2粒组在该压力范围内主要因颗粒的滚动与重分布导致压缩;级配良好的S3组除部分低宽度断肢状颗粒外其余大小、形态颗粒无明显破裂。(2)当压力较大时(>800kPa),S1组钙质砂逐渐转向以颗粒的整体破坏为主的破碎形式;S2、S3两组试样随着密实度的提高,砂颗粒的破坏以整体破碎为主。基于对破碎过程中试样微观结构变化的提取与分析,总结并提出了控制钙质砂颗粒破碎的4种接触模式:点-线接触、线-面接触、面-面接触和复合接触,可用于判断不同条件下的颗粒破碎形式。最后,讨论了钙质砂在破碎过程中颗粒几何参数的变化。
  • 图  1  本文所用钙质砂的典型颗粒形态

    Figure  1.  Typical calcareous sand morphology in this study

    图  2  不同粒径、级配下试样的e-lgp曲线

    Figure  2.  e-lgp curves with different particle sizes and gradations

    图  3  压缩过程中各粒组百分比变化图

    a. S1粒组;b. S2粒组;c. S3粒组

    Figure  3.  Percentage change pattern of each particle group during compression

    图  4  钙质砂在不同压力下破碎后的微观结构特征

    a. S1-200kPa;b. S1-800kPa;c. S1-3200kPa;d. S2-400kPa;e. S2-800kPa;f. S2-3200kPa;g. S3-800kPa;h. S3-1600kPa;i. S3-3200kPa

    Figure  4.  Microstructure characteristics of broken calcareous sand under different pressure levels

    图  5  不同接触形式下颗粒破坏示意图

    Figure  5.  Schematic diagram of particle failure under different contact forms

    表  1  各粒径砂颗粒基本几何参数

    Table  1.   Basic geometric parameter of various particle size

    粒径
    范围
    /mm
    平均
    周长
    /mm
    最大
    长度
    /mm
    平均
    长度
    /mm
    最大
    宽度
    /mm
    平均
    宽度
    /mm
    平均
    长宽比
    平均
    形状
    系数
    0.5~1 2.57 1.68 0.91 0.94 0.61 1.49 0.73
    1~2 5.31 3.59 1.89 1.65 1.2 1.58 0.70
    下载: 导出CSV

    表  2  各粒组颗粒统计参数

    Table  2.   Sand sample particle statistical

    粒组 压力
    /kPa
    最大长度
    /mm
    平均长度
    /mm
    最大宽度
    /mm
    平均宽度
    /mm
    形状
    系数
    S1粒组 100 1.45 0.60 0.62 0.27 0.43
    200 0.91 0.43 0.45 0.18 0.39
    400 1.54 0.65 0.74 0.32 0.40
    800 0.97 0.32 0.57 0.17 0.46
    1600 1.92 0.85 0.79 0.36 0.44
    3200 0.77 0.29 0.38 0.13 0.50
    S2粒组 100 1.07 0.42 0.59 0.20 0.49
    200 1.12 0.54 0.60 0.25 0.41
    400 0.56 0.29 0.30 0.15 0.45
    800 0.99 0.45 0.53 0.21 0.46
    1600 0.57 0.24 0.29 0.12 0.46
    S3粒组 100 1.40 0.65 0.56 0.28 0.48
    200 1.34 0.72 0.62 0.32 0.50
    400 0.77 0.29 0.36 0.13 0.40
    800 0.82 0.31 0.45 0.14 0.43
    1600 0.79 0.27 0.39 0.12 0.43
    3200 0.77 0.26 0.40 0.12 0.46
    下载: 导出CSV
  • Aursudkij B. 2007. A laboratory study of railway ballast behavior under traffic loading and tamping maintenance[D]. Nottingham: University of Nottingham.
    Bastidas P A M. 2016. Ottawa F-65sand characterization[D]. Davis: University of California.
    Cavarretta I, Coop M, O'Sullivan C. 2010. The influence of particle characteristics on the behavior of coarse grained soils[J]. Géotechnique, 60(6): 413-423. doi: 10.1680/geot.2010.60.6.413
    Chen H D, Wei H Z, Meng Q S, et al. 2018. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 26(6): 1490-1498. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201602022.htm
    Coop M R. 1993. The mechanics of uncommented carbonate sands[J]. Géotechnique, 40(4): 607-626. doi: 10.1680/geot.1990.40.4.607
    Deng X X, Ma G, Zhou W, et al. 2018. Effects of local constraints patterns on fragmentation of single grain[J]. Journal of Zhejiang University(Engineering Science), 52(7): 1329-1337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201807013
    Donohus S, O'sullivanc. Long M. 2009. Particle breakage during cyclic triaxial loading of a carbonate sand[J]. Géotechnique, 59(5): 477-428. doi: 10.1680/geot.2008.T.003
    Gu Y F. 2018. Macro and micro research on compressibility of soil based on laboratory experiment and discrete element numerical simulation[D]. Nanjing: Nanjing University.
    Guyone, Troadec J P. 1994. Du sac de billes au tas de sable[M]. France: Odile Jacob Science.
    Hall E B, Gordon B B. 1963. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 361 : 315-328. http://www.researchgate.net/publication/288811599_Triaxial_testing_with_large-scale_pressure_equipment_laboratory_shear_testing_of_soils
    Jiang L. 2014. The study on particle breakage mechanics characteristics of south China sea calcareous sand[D]. Chengdu: Chengdu University of technology.
    Kjaernsli B, Sande A. 1963. Compressibility of some coarse grained materials[C]//Proceedings of the 1st European Conference on Soil Mechanics and Foundation Engineering, 1 : 245-251.
    Liu B, Lu Y, Liu C, et al. 2017. Extraction technology of microstructure of sandy soil in compression processes[J]. Journal of Engineering Geology 25 (4): 968-974. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201704011
    Liu C Q, Wang R, Wu X S. 1999. Some problems for the tests of pgysico-mechanical properties of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering. http://www.oalib.com/paper/1481997
    Liu C, Xu Q, Shi B, et al. 2018. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 40(5): 925-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201805018
    Meng Q S, Wang R, Yu K F, et al. 2009. Undisturbed strata succession sampling technology and the engineering geological characteristics of an atoll in the Southern South China Sea[J]. Marine Georesources and Geotechnology, 27(4): 296-308. doi: 10.1080/10641190902967168
    Nakata Y, Hyodo M, Hyde A F L, et al. 2001. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 41(1): 69-82. doi: 10.3208/sandf.41.69
    Qin Y, Yao T, Wang R, et al. 2014. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 35(11): 3123-3128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201411012
    Semple R. 1988. State of the art report on engineering properties of carbonate soils[C]//Proc Int Conf on Calcareous Sediments. Perth, Australia: [s.n.]: 807-836.
    Shan H G, Wang R. 2000. Research on several important issues in coral reef engineering geology[J]. Journal of Engineering Geology, (S1): 361-365. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ199906009.htm
    Valdes J R, Koprulu E. 2008. Internal stability of crushed sands: Experimental study[J]. Géotechnique, 58(8): 615-622. doi: 10.1680/geot.2007.00112
    Vesic A S, Clough G W. 1968. Behavior of granular materials under high stresses[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 94(SM3): 661-688. http://ci.nii.ac.jp/naid/10007809046
    Wang G, Zha J J, Wei X. 2018. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 41(4): 755-760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201904020
    Wang J H, Wang R. 2010. Study on enginerring properties of calcareous sand[J]. Journal of Engineering Geology, 18 : 26-32. http://www.gcdz.org/EN/abstract/abstract10112.shtml
    Wang L, Lu X B, Wang S Y, et al. 2009. Experimental investigation on cementation of calcareous sand and its basic mechanical characteristics[J]. Journal of Experimental Mechanics, 24(2): 133-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylx200902008
    Wang R, Wu W J. 2019. Exploration and research on engineering geological properties of coral reefs—Engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 27(1): 202-207. http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201901022.htm
    Wu J P, Gu Y Z, Yu Z G. 1990. Factors affecting specimen density in pluviation[J]. Dam Observation and Geotechnical Tests, (3): 33-39.
    Wu J P, Lou Z G. 1994. Basic properties of calcareous sand[C]//Proceedings of the 7th National Conference on Soil Mechanics and Basic Engineering. Beijing: China Building Industry Press: 267-271.
    Zhang J M, Zhang L, Jiang G S, et al. 2008. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 29(10): 2789-2793. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200810037
    Zhang J M. 2004. Study on the fundamental mechanical characteristics of calcareous sand and the influence of particle breakage[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
    Zhang J R, Zhang B W, Hu Y, et al. 2016. Predicting the particle breakage of granular geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 35 (9): 1898-1905. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201609018
    Zhao H T, Song C J, Yu K F, et al. 1994. Nature and development of Yongxing Island and Shidao Island in the Xisha Islands[J]. Maring Science Bulletin:13(5): 44-56. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HUTB199405007.htm
    Zhao H T, Zhao C J, Zhu Y Z, et al. 1993. Environmental, resource characteristics and development issues in the Nansha Islands[M]. Beijing: Seismological Press: 47-55.
    陈火东, 魏厚振, 孟庆山, 等. 2018.颗粒破碎对钙质砂的应力-应变强度影响研究[J].工程地质学报, 26(6): 1490-1498. doi: 10.13544/j.cnki.jeg.2017-519
    邓璇璇, 马刚, 周伟, 等. 2018.局部约束模式对单颗粒破碎强度的影响[J].浙江大学学报(工学版), 52(7): 1329-1337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201807013
    顾颖凡. 2018.基于试验和离散元数值模拟的土体压缩性质宏微观研究[D].南京: 南京大学.
    蒋礼. 2014.南海钙质砂破碎力学特性研究[D].成都: 成都理工大学.
    刘兵, 卢毅, 刘春, 等. 2017.砂土压缩过程中微观结构提取技术研究[J].工程地质学报, 25(4): 968-974. doi: 10.13544/j.cnki.jeg.2017.04.010
    刘崇权, 汪稔, 吴新生. 1999.钙质砂物理力学性质试验中的几个问题[J].岩石力学与工程学报, 18(2): 209-212. doi: 10.3321/j.issn:1000-6915.1999.02.021
    刘春, 许强, 施斌, 等. 2018.岩石颗粒与孔隙系统数字图像识别方法及应用[J].岩土工程学报, 40(5): 925-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201805018
    秦月, 姚婷, 汪稔, 等. 2014.基于颗粒破碎的钙质沉积物高压固结变形分析[J].岩土力学, 35(11): 3123-3128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201411012
    单华刚, 汪稔. 2000.珊瑚礁工程地质中的几个重要问题研究[J].工程地质学报, 8(增): 361-365. http://www.gcdz.org/article/id/10488
    汪稔, 吴文娟. 2019.珊瑚礁岩土工程地质的探索与研究-从事珊瑚礁研究30a[J].工程地质学报, 27(1): 202-207. doi: 10.13544/j.cnki.jeg.2019-008
    王刚, 查京京, 魏星. 2018.循环三轴应力路径下钙质砂颗粒破碎演化规律[J].岩土工程学报, 41(4): 755-760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201904020
    王建华, 汪稔. 2010.钙质砂的工程性质研究进展及展望[J].工程地质学报, 18(增刊): 26-32. http://www.gcdz.org/article/id/10112
    王丽, 鲁晓兵, 王淑云, 等. 2009.钙质砂的胶结性及对力学性质影响的实验研究[J].实验力学, 24(2): 133-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylx200902008
    吴建平, 顾尧章, 余祖国. 1990.砂雨法成型中影响试样密度的因素[J].大坝观测与土工测试, (3): 33-39. http://www.cnki.com.cn/Article/CJFDTotal-DBGC199003005.htm
    吴京平, 楼志刚. 1994.钙质砂的基本性质[C]//第七届全国土力学及基础工程学术会议论文集.北京: 中国建筑工业出版社: 267-271.
    张季如, 张弼文, 胡泳, 等. 2016.粒状岩土材料颗粒破碎演化规律的模型预测研究[J].岩石力学与工程学报, 35(9): 1898-1905. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201609018
    张家铭, 张凌, 蒋国盛, 等. 2008.剪切作用下钙质砂颗粒破碎试验研究[J].岩土力学, 29(10): 2789-2793. doi: 10.3969/j.issn.1000-7598.2008.10.037
    张家铭. 2004.钙质砂基本力学性质及颗粒破碎影响研究[D].武汉: 中国科学院武汉岩土力学研究所.
    赵焕庭, 宋朝景, 余克服, 等. 1994.西沙群岛永兴岛和石岛的自然与开发[J].海洋通报, 13(5): 44-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400816593
    赵焕庭, 宋朝景, 朱袁智, 等. 1993.南沙群岛的环境、资源特征与开发问题[M].中国沿海资源工程环境系统与经济发展战略.北京: 地震出版社: 47-55.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2257
  • HTML全文浏览量:  879
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 修回日期:  2019-11-18
  • 刊出日期:  2020-08-25

目录

    /

    返回文章
    返回