高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究

张文 韩博 孙昊林 陈浚淇 王硕男 孙琦 尹韩

张文, 韩博, 孙昊林, 等. 2020. 高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究[J]. 工程地质学报, 28(2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080
引用本文: 张文, 韩博, 孙昊林, 等. 2020. 高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究[J]. 工程地质学报, 28(2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080
Zhang Wen, Han Bo, Sun Haolin, et al. 2020. Non-contact collection and 3D fracture network modelling for high-steep rock slopes[J]. Journal of Engineering Geology, 28(2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080
Citation: Zhang Wen, Han Bo, Sun Haolin, et al. 2020. Non-contact collection and 3D fracture network modelling for high-steep rock slopes[J]. Journal of Engineering Geology, 28(2): 221-231. doi: 10.13544/j.cnki.jeg.2020-080

高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究

doi: 10.13544/j.cnki.jeg.2020-080
基金项目: 

国家自然科学基金面上项目 3A418BA04424

详细信息
    作者简介:

    张文(1985-),男,博士,教授,主要从事工程地质方面的科研与教学工作. E-mail: zhang_wen@jlu.edu.cn

  • 中图分类号: U416.1+4

NON-CONTACT COLLECTION AND 3D FRACTURE NETWORK MODELL ̄ING FOR HIGH-STEEP ROCK SLOPES

Funds: 

the National Natural Science Foundation of China 3A418BA04424

  • 摘要: 本文分别以非接触式测量与三维裂隙网络模拟技术对汶川县绵虒镇大溪沟沟口高陡斜坡的结构面系统进行了深入研究。以无人机、数字近景摄影测量与三维激光扫描方法建立了现场斜坡的三维DEM模型并识别与解译了斜坡的结构面系统。尤其是采用无人机与近景摄影测量技术,识别并解译了整体斜坡的长大控制性结构面与坡面上的6663条随机构造结构面。基于以上数据,本文提出了一种适用于高陡斜坡分析的超大窗口三维裂隙网络模拟方法,采用概率统计与空间几何推导的方法,建立了岩体三维结构面的直径、产状与密度计算方法。这种方法更加简便且针对性强,现场验证也表明其具有较高的模拟精度。
  • 图  1  大溪沟及其沟口斜坡位置与基本地质信息图

    Figure  1.  Location and geological information of Daxigou gully and its slopes

    图  2  大溪沟斜坡现场照片与滑坡边界调查信息图

    Figure  2.  Site photos of Daxigou slopes and their boundary information

    图  3  裂隙网络-迹线-露头面关系示意图

    Figure  3.  Relationship among fracture network, traces and outcrop surface

    图  4  无人机获取的大溪沟整体影像与识别的宏观结构面

    Figure  4.  Overall image and recognized macro structures of Daxigou slopes using UAV

    图  5  三维激光扫描仪获取的点云及坡面产状分布图

    Figure  5.  Point clouds and outcrop orientation distribution obtained with 3D laser scanner

    图  6  数字近影摄影测量窗口布置与模型解译示例图

    Figure  6.  Sampling windows and interpretation of models for digital close-range photogrammetry

    图  7  大溪沟斜坡坡面裂隙的节理玫瑰花图与迹长概率密度分布图

    a.滑坡后缘破裂面上结构面描述;b.滑坡左边界破裂面上结构面描述

    Figure  7.  Rose diagrams and trace length probability density distribution of fractures in Dasigou slope outcrops

    图  8  后缘与左边界破裂段的三维裂隙网络显示(不含宏观结构面)

    a.后缘破裂段三维裂隙网络;b.左边界破裂段三维裂隙网络

    Figure  8.  Display of 3D fracture network for trailing and left edge areas(macro discontinuities are excluded)

    图  9  模拟与实测迹长分布直方图及概率密度曲线

    a.后缘破裂段;b.左边界破裂段

    Figure  9.  Histograms and probability density curves of the distribution of modeled and collected trace lengths

    表  1  三维裂隙网络参数汇总表

    Table  1.   List of 3D fracture network parameters

    窗口 组序 现场条数 平均产状 半迹长平方ch2 三维空间直径r 密度/m-3
    分布类型 均值 方差 分布 α β 均值 方差
    后缘 1 626 36.2°∠69.6° LN 2.14 17.60 LN 0.57 0.60 2.12 1.99 0.126
    2 1403 356°∠35.1° LN 2.79 42.82 LN 0.52 0.68 2.13 2.68 0.132
    3 337 109.2°∠63.3° LN 2.69 38.34 LN 0.57 0.65 2.18 2.52 0.021
    4 321 162.3°∠70.4° LN 3.19 99.08 LN 0.34 0.79 1.92 3.25 0.028
    左边界 1 433 35.1°∠68.7° LN 1.91 34.74 G 1.80 0.81 1.46 1.18 0.037
    2 1867 359°∠31.5° LN 2.82 209.27 G 1.21 1.00 1.22 1.22 0.140
    3 789 113.6°∠65.6° LN 2.96 343.31 G 1.19 1.02 1.21 1.24 0.110
    4 887 154.8°∠74.6° LN 1.98 79.19 G 1.34 0.86 1.15 0.99 0.059
    下载: 导出CSV
  • Abellán J M, Vilaplana J, Martínez. 2006. Range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria(Eastern Pyrenees, Spain)[J]. Engineering Geology, 88(3-4):136-148.
    Bai Z H, Li W Z, Li H B, et al. 2018. Engineering rock mass quality assessment for post earthquake high slope at Hongshiyan[J]. Journal of Engineering Geology, 26(5):1155-1161. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805006
    Bauer M, Toth T M. 2017. Characterization and DFN modelling of the fracture network in a Mesozoic karst reservoir:Gomba Oilfield, Paleogene Basin, Central Hungary[J]. Journal of Petroleum Geology, 40 (3):319-334. http://cn.bing.com/academic/profile?id=224c80cadaffce5683a7bbd0f3f434a9&encoded=0&v=paper_preview&mkt=zh-cn
    Bryant F B, Satorra A. 2012. Principles and practice of scaled difference Chi-square testing[J]. Structural Equation Modeling-A Multidisciplinary Journal, 19(3):372-398. http://cn.bing.com/academic/profile?id=4c5757ab7e2e0179ddd6b54c2f91d154&encoded=0&v=paper_preview&mkt=zh-cn
    Dong X J, Huang R Q. 2006. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering, 25 (S2):3629-3635. http://cn.bing.com/academic/profile?id=8083087177bff231fbee92d143c8b3c0&encoded=0&v=paper_preview&mkt=zh-cn
    Dong X J, Xu Q, She J X, et al. 2019. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 45(3):432-441.
    Du S G, Yong R, Chen J Q, et al. 2017. Graded analysis for slope stability assessment of large open-pit mines[J]. Chinese Journal of Rock Mechanics and Engineering, 36(11):2601-2611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711001
    Ge Y F, Xia D, Tang H M, et al. 2017. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 36(12):3050-3061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201712018
    Gregory D R, Steven M, Stephen J B, et al. 2016. An elevated perspective:Dyke-related fracture networks analysed with UAV photogrammetry[J]. Acta Geologica Sinica(English Edition), 90 (S1):54-55. http://cn.bing.com/academic/profile?id=1f11e4adc614a0c6242eb60202e3395b&encoded=0&v=paper_preview&mkt=zh-cn
    Gu D Z. 1979. Foundation of rock engineering geomechanics[M]. Beijing:Science Press.
    Han X D, Chen J P, Wang Q, et al. 2016. A 3D fracture network model for the undisturbed rock mass at the Songta Dam site based on small samples[J]. Rock Mechanics Rock Engineering, 49(2):611-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=489160e69a86632c89161c6a645357c6
    Huang R Q, Xu M, Chen J P, et al. 2004. Detailed description of complex rock mass structure and its engineering application[M]. Beijing:Science Press.
    Jia H B, Ma S Z, Tang H M, et al. 2002. Study on engineering application of 3-D modeling of rock discontinuity network[J]. Chinese Journal of Rock Mechanics and Engineering, 21(7):976-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200207008
    Jia H B, Tang H M, Liu Y R, et al. 2008. Theory and engineering application of three-dimensional network simulation of rock mass structure surface[M]. Beijing:Science Press.
    Lan H X, Zhang Y X, Wu Y M. 2019. Effect of rock mass structure on the dynamics of long-runout landslide[J]. Journal of Engineering Geology, 27(1):108-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201901012
    Li H B, Li X W, Li W Z, et al. 2019. Quantitative assessment for the rockfall hazard in a post-earthquake high rock slope using terrestrial laser scanning[J]. Engineering Geology, 248(8):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0152396729140f56f187c2ccb9efcc7a
    Li S Q, Zhang H C, Liu R Y. 2017. Semi-automatically counting orientations of rock mass structural plane based on unmanned aerial vehicle photogrammetry[J]. Science Technology and Engineering, 17(26):18-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201726003
    Liu Z X, Chen J P, Wang F Y, et al. 2019. Rapid acquisition of geometrical information of rock mass discontinuities based on portable controller frame[J]. Journal of Jilin University(Earth Science Edition), 49(4):1192-1199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201904026
    Palleske C K, Hutchinson D J, Elmo D. 2013. Impacts of limited data collection windows on accurate rock simulation using discrete fracture networks[C]//47th U.S. Rock Mechanics/Geomechanics Symposium. America: American Rock Mechanics Association.
    Roberts G, Poropat G V. 2003. Highwall joint mapping in 3-D at the Moura Mine using SIROJOINT[R]. Queensland: CSIRO Exploration and Mining Technology Court.
    Song T J, Chen J P, Zhang W, et al. 2015. A method for multivariate parameter dominant partitioning of discontinuities of rock mass based on artificial bee colony algorithm[J]. Rock and Soil Mechanics, 36(3):861-868. http://d.old.wanfangdata.com.cn/Periodical/ytlx201503033
    Song X C, Xu W Y. 2004. Numerical model of three-dimensional discrete fracture network for seepage in fractured rocks(Ⅰ):generation of fracture network[J]. Chinese Journal of Rock Mechanics and Engineering, 23(12):2015-2020. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200412014.htm
    Stephanie C, Robert S, Jane R, et al. 2018. Using near-surface photogrammetry assessment of surface roughness(NSPAS)to assess the effectiveness of erosion control treatments applied to slope forming materials from a mine site in West Africa[J]. Geomorphology, 322(1):188-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6f1b7ea95c09cd9452e20ab2d828c9e
    Wang F Y, Chen J P, Yang G D, et al. 2012. Solution models of geometrical information of rock mass discontinuities based on digital close range photogrammetry[J]. Journal of Jilin University(Earth Science Edition), 42(6):1839-1846. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206028.htm
    Xie T. 2011. A window investigation method based on image of rock mass discontinuity[J]. Chinese Journal of Underground Space and Engineering, 7 (S1):1422-1427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj2011z1027
    Zhang Q Q. 2018. An application of light drone in interpretation of dangerous rock mass[J]. China's Manganese Industry, 36(5):14-20. http://d.old.wanfangdata.com.cn/Periodical/zgmengy201805006
    Zhao M Y, Wang F Y, Wang M C, et al. 2018. Rock mass discontinuity acquisition based on photogrammetry of UAV[J]. Journal of Engineering Geology, 26 (S1):480-487.
    白志华, 李万州, 李海波, 等. 2018.红石岩震损高陡边坡工程岩体质量评价[J].工程地质学报, 26(5):1155-1161. doi: 10.13544/j.cnki.jeg.2018029
    董秀军, 黄润秋. 2006.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报, 25 (S2):3629-3635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2006z2046
    董秀军, 许强, 佘金星, 等. 2019.九寨沟核心景区多源遥感数据地质灾害解译初探[J].武汉大学学报(信息科学版):45(3):432-441.
    杜时贵, 雍睿, 陈咭扦, 等. 2017.大型露天矿山边坡岩体稳定性分级分析方法[J].岩石力学与工程学报, 36(11):2601-2611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711001
    葛云峰, 夏丁, 唐辉明, 等. 2017.基于三维激光扫描技术的岩体结构面智能识别与信息提取[J].岩石力学与工程学报, 36(12):3050-3061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201712018
    谷德振. 1979.岩体工程地质力学基础[M].北京:科学出版社.
    黄润秋, 许模, 陈剑平, 等. 2004.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社.
    贾洪彪, 马淑芝, 唐辉明, 等. 2002.岩体结构面网络三维模拟的工程应用研究[J].岩石力学与工程学报, 21(7):976-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200207008
    贾洪彪, 唐辉明, 刘佑荣, 等. 2008.岩体结构面三维网络模拟理论与工程应用[M].北京:科学出版社.
    兰恒星, 仉义星, 伍宇明. 2019.岩体结构效应与长远程滑坡动力学[J].工程地质学报, 27(1):108-122. doi: 10.13544/j.cnki.jeg.2019-071
    李水清, 张慧超, 刘乳燕. 2017.无人机摄影测量半自动统计岩体结构面产状[J].科学技术与工程, 17(26):18-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201726003
    刘子侠, 陈剑平, 王凤艳, 等. 2019.基于活动控制的岩体结构面几何信息快速获取[J].吉林大学学报(地球科学版), 49(4):1192-1199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201904026
    宋腾蛟, 陈剑平, 张文, 等. 2015.基于人工蜂群算法的岩体结构面多参数优势分组研究[J].岩土力学, 36(3):861-868. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201503033
    宋晓晨, 徐卫亚. 2004.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报, 23(12):2015-2020. http://www.cnki.com.cn/Article/CJFDTotal-YSLX200412014.htm
    王凤艳, 陈剑平, 杨国东, 等. 2012.基于数字近景摄影测量的岩体结构面几何信息解算模型[J].吉林大学学报(地球科学版), 42(6):1839-1846. http://www.cqvip.com/QK/91256B/201206/44695113.html
    谢韬. 2011.基于岩体结构面影像的窗口调查方法[J].地下空间与工程学报, 7 (S1):1422-1427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj2011z1027
    张骞棋. 2018.轻型无人机在危岩体结构面信息解译中的应用[J].中国锰业, 36(5):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmengy201805006
    赵明宇, 王凤艳, 王明常, 等. 2018.基于无人机摄影测量的岩体结构面信息获取[J].工程地质学报, 26 (S1):480-487. doi: 10.13544/j.cnki.jeg.2018173
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2374
  • HTML全文浏览量:  487
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-02-23
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回