SCIENTIFIC RESEARCH FRAMEWORK OF LIVABLE YELLOW RIVER
-
摘要: 黄河问题表象于河,形成于域,根植于地。针对于黄河流域高质量发展面临的地球科学问题特点及挑战,本文提出了“宜居黄河”科学构想,旨在构建一个包括“安全黄河”、“绿色黄河”、“生态黄河”、“和谐黄河”和“智慧黄河”5大核心内容的体系完善的宜居黄河研究科学架构,并对这5个方面的科学内涵和关键研究内容进行了阐述。其中,(1)安全黄河立足于工程地质学,研究黄河流域地质地表过程及其灾害效应,以保障地质安全需求,构建安全黄河体系;(2)绿色黄河立足于水文地质学,研究黄河流域水循环过程及其水土环境变化效应,构建绿色黄河体系;(3)生态黄河立足于环境地质学,研究黄河流域生态系统演化规律及其生态屏障效应,构建生态黄河体系;(4)和谐黄河立足于资源地质学,研究黄河流域资源开发与人地协调的发展模式,构建和谐黄河体系;(5)智慧黄河立足于大数据及信息科学,研究黄河流域地学信息集成与智慧决策平台,构建智慧黄河体系。这5个部分相互支撑融合,共同解决宜居黄河的核心关键问题,从而为保障黄河长治久安、促进全流域高质量发展,最终形成造福中华民族的“幸福黄河”起到科技支撑作用。Abstract: The problem of the Yellow River is reflected from the river, formed in the region, and rooted in the land. In light of the characteristics and challenges associated with geoscience problems in succeeding the high-quality development of the Yellow River Basin, this paper proposes the concept of so-called"livable Yellow River", which is consist of five core aspects in a systematic and scientific framework, namely the"Safe Yellow River", the"Green Yellow River", the"Ecological Yellow River", the"Harmonious Yellow River" and the"Intelligent Yellow River". The associated scientific connotation and major research contents of each aspect are illustrated in this paper. Specifically, (1)on the basis of the engineering geology, the"Safe Yellow River" aims to solve problems encountered in the geological surface process and the related disastrous impacts, so as to meet the geological safety requirements and build the Yellow River safety system; (2)on the basis of hydrogeology, the"Green Yellow River" focuses on the water cycle process and the related impacts on water and soil environment, thus constructs a green Yellow River system; (3)on the basis of the environmental geology, the "Ecological Yellow River" explores the evolution law of ecosystem and the related ecological barrier effect, and establishes an ecological Yellow River system; (4)on the basis of the resource geology, the "Harmonious Yellow River" studies the development mode of resource exploitation and people-land coordination in the Yellow River Basin, and builds a harmonious Yellow River system; (5)on the basis of the big data and information science, "Intelligent Yellow River" studies the geological information integration and intelligent decision-making platform of the Yellow River Basin, and constructs the intelligent Yellow River system. These five parts support and integrate each other to jointly solve the core and key issues of the livable Yellow River, so as to provide a scientific and technological support in ensuring the long-term stability of the Yellow River and promoting the high-quality development of the entire river basin, and ultimately forming a"Happiness Yellow River" that benefits the Chinese nation.
-
图 3 黄河流域黄土高原滑坡灾害空间分布(据Peng et al., 2019b)
Figure 3. Spatial distribution of landslides in the Loess Plateau of the Yellow River Basin
-
Bowman D, King G, Tapponnier P. 2003. Slip partitioning by elastoplastic propagation of oblique slip at depth[J]. Science, 300(5622): 1121-1123. Dai W, Chen Y, Xue G, et al. 2009. Translated learning: Transfer learning across different feature spaces[C]//Conference on Advances in Neural Information Processing Systems[S.L.]: Curran Associates Inc. Dang S, Chaudhury S, Lall B, et al. 2017. Tractography-based score for learning effective connectivity from multimodal imaging data using dynamic bayesian networks[J]. IEEE Transactions on Biomedical Engineering, 65(5): 1057-1068. http://cn.bing.com/academic/profile?id=a1d57edcf3cbe9b8bbca62274ffc63ac&encoded=0&v=paper_preview&mkt=zh-cn Guppy H B. 1880. The Yang-tse, the Yellow River, and the Pei-ho[J]. Nature, 23(579): 99-99. http://cn.bing.com/academic/profile?id=ec8cdea7e6e68fbb03595197c8f1f553&encoded=0&v=paper_preview&mkt=zh-cn Han X F, Li Z H, Bo J J, et al. 2019. Rapid assessment of disaster loss and spatial distribution of intensity residuals in Linfen Area[J]. Journal of Risk Analysis and Crisis Response, 9(1): 20-35. http://cn.bing.com/academic/profile?id=a7419d9396f2604979a50f016f2a49e6&encoded=0&v=paper_preview&mkt=zh-cn Huang C C, Zhou Y L, Zhang Y Z, et al. 2017. Comment on "Outburst flood at 1920 BCE supports historicity of China's Great Flood and the Xia dynasty"[J]. Science, 355(6332): 1382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bb32be845f1e085a11c722d7f60d5a1 Jiang C, Pan S, Chen S. 2017. Recent morphological changes of the Yellow River(Huanghe) submerged delta: Causes and environmental implications[J]. Geomorphology, 293(PT.A): 93-107. http://cn.bing.com/academic/profile?id=ec6ef4adc6e7cacccb9e4e6d12aebcdf&encoded=0&v=paper_preview&mkt=zh-cn Lin A M, Hu J M, Gong W B. 2015. Active normal faulting and the seismogenic fault of the 1739 MS8.0 Pingluo earthquake in the intracontinental Yinchuan Graben, China[J]. Journal of Asian Earth Sciences, 114: 155-173. Miao C, Ni J, Borthwick A G L. 2010. Recent changes of water discharge and sediment load in the Yellow River Basin, China[J]. Progress in Physical Geography, 34(4): 541-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0309133310369434 Mossman S. 1878. Double Della of the Yellow River[J]. Geographical Magazine, 8. Mostern Ruth. 2016. Sediment and state in Imperial China The Yellow River watershed as an earth system and a world system[J]. Nature & Culture, 11(2): 121-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd229692c62f7ab1d81368f02bbb7fd3 Peng J, Fan Z, Wu D, et al. 2019a. Landslides triggered by excavation in the loess plateau of China: A case study of Middle Pleistocene loess slopes[J]. Journal of Asian Earth Sciences, 171: 246-258. http://cn.bing.com/academic/profile?id=496da74def4cb3186764f4b6fc87b171&encoded=0&v=paper_preview&mkt=zh-cn Peng J, Ma P, Wang Q, et al. 2018. Interaction between landsliding materials and the underlying erodible bed in a loess flowslide[J]. Engineering Geology, 234, 38-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b43a43866339afc22b7bb74d30ac93fd Peng J, Wang S, Wang, Q, et al. 2019b. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 170: 329-350. http://cn.bing.com/academic/profile?id=dfa6b219c92046ee2de55d6d9e642884&encoded=0&v=paper_preview&mkt=zh-cn Polani D. 2013. Probabilistic Graphical Model[J]. Encyclopedia of Systems Biology: 1748. Ran L, Lu X X, Xin Z. 2014. Erosion-induced massive organic carbon burial and carbon emission in, the Yellow River Basin, China[J]. Biogeosciences, 11(4): 945-959. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f995f54901b47873d2a92e437f4f0a69 Saito Y, Yang Z, Hori K. 2001. The Huanghe(Yellow River) and Changjiang(Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene[J]. Geomorphology, 41(2): 219-231. Sun P, Rong J, et al. 2017. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu Province, northwest China[J]. Bulletin of Engineering Geology & the Environment, 76: 1281-1295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2728db0b64682a749040820da04fc62 Wang G, Qian J, Cheng G, et al. 2001. Eco-environmental degradation and causal analysis in the source region of the Yellow River[J]. Environmental Geology, 40: 884-890. Wang H J, Yang ZS, Yoshiki Saito, et al. 2007. Stepwise decreases of the Huanghe(Yellow River) sediment load(1950-2005):Impacts of climate change and human activities[J]. Global and Planetary Change, 57: 331-354. https://www.researchgate.net/publication/223835830_Stepwise_decreases_of_the_Huanghe_Yellow_River_sediment_load_1950-2005_Impacts_of_climate_change_and_human_activities Wang S, Fu B, Piao S, et al. 2015. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 9(1): 38-41. http://cn.bing.com/academic/profile?id=dfa6b219c92046ee2de55d6d9e642884&encoded=0&v=paper_preview&mkt=zh-cn Wang T, Wu S R, Shi J S, et al. 2018. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream[J]. Engineering Geology, 235: 11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=068e510cd2da76466f77f428c9344cdd Wang Y, Su Y. 2011. The geo-pattern of course shifts of the Lower Yellow River[J]. Journal of Geographical Sciences, 21(6): 1019-1036. Wu Q, Si B, He H, et al. 2019. Determining regional-scale groundwater recharge with GRACE and GLDAS[J]. Remote Sensing, 11:154. Wu Q, Zhao Z, Liu L, et al. 2016. Outburst flood at 1920 BCE supports historicity of China's Great Flood and the Xia dynasty[J]. Science, 353(6299): 579-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58165b4da34150063d5ba47ac5ced8d7 Xia J, Li X, Li T, et al. 2014. Response of reach-scale bankfull channel geometry to the altered flow and sediment regime in the lower Yellow River[J]. Geomorphology, 213(may 15): 255-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3204971907148231f2e5e2774ff27f9f Xu C. 2016. The landslide that dammed Mengda Lake was not triggered by the 1927 Gulang, China, M8 earthquake[J]. Journal of Paleolimnology, 57(2): 157-161. doi: 10.1007/s10933-016-9934-y Xu M, Ye B, Zhao Q, et al. 2013. Estimation of water balance in the source region of the Yellow River based on GRACE satellite data[J]. Journal of Arid Land, 5(3): 384-395. http://www.cnki.com.cn/Article/CJFDTotal-GHKX201303013.htm Xu Y R, He H L, Deng Q D, et al. 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for magnitude limits of normal fault earthquakes[J]. Journal of Geophysical Research. Solid Earth, 123(4): 3098-3121. Yang D, Yu G, Xie Y, et al. 2000. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China[J]. Geomorphology, 33(1-2): 73-88. http://cn.bing.com/academic/profile?id=21c163a1217b3e51b7a0f08345f30fc0&encoded=0&v=paper_preview&mkt=zh-cn Zhang A, Yang Z, Zhong J, et al. 1995. Characteristics of late quaternary activity along the Southern Border Fault Zone of Weihe Graben Basin[J]. Quaternary International, 25(25): 25-31. http://cn.bing.com/academic/profile?id=0460262921eb166c9ae8650022719948&encoded=0&v=paper_preview&mkt=zh-cn Zhang D, Wang G. 2007. Study of the 1920 Haiyuan earthquake-induced landslides in loess(China)[J]. Engineering Geology, 94(1-2): 76-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e0a8c33d8efdddf94fec8313eddfbb8 Zhuang J Q, Peng J B, Xu C, et al. 2018. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China[J]. Geomorphology, 314: 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ed39031aea95ee0056f7c916ca60cf6 安芷生, 张培震, 王二七, 等. 2006.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究, 26(5): 678-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200605002 陈发虎, 安成邦, 董广辉, 等. 2017.丝绸之路与泛第三极地区人类活动、环境变化和丝路文明兴衰[J].中国科学院院刊, 32(9): 967-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=673341213 程钰, 尹建中, 王建事. 2019.黄河三角洲地区自然资本动态演变与影响因素研究[J].中国人口·资源与环境, 29(4): 127-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgrkzyyhj201904014 崔亚莉, 张戈, 邵景力. 2004.黄河流域地下水系统划分及其特征[J].资源科学, 26(2): 2-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200402001 崔之久, 伍永秋, 刘耕年, 等. 1998.关于"昆仑-黄河运动"[J].中国科学(D辑:地球科学), 1: 53-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800285846 樊杰, 王亚飞, 王怡轩. 2020.基于地理单元的区域高质量发展研究——兼论黄河流域同长江流域发展的条件差异及重点[J].经济地理, 40(1): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl202001001 冯利华. 2002.黄河断流与黄河的水资源承载力[J].灾害学, 17(1): 81-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhx200201017 傅伯杰, 陈利顶, 马克明. 1999.黄土丘陵区小流域土地利用变化对生态环境的影响——以延安市羊圈沟流域为例[J].地理学报, 54(3): 51-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb199903006 郭正堂, 丁仲礼, 刘东生. 1996.黄土中的沉积—成壤事件与第四纪气候旋回[J].科学通报, (1): 56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199601017 郭正堂, 刘东生, 安芷生. 1994.渭南黄土沉积中十五万年来的古土壤及其形成时的古环境[J].第四纪研究, (3): 256-269. http://www.cqvip.com/qk/97036X/199403/1311314.html 胡春宏. 1999.黄河泥沙问题及其治理方略[C]//中国科学技术协会、浙江省人民政府.面向21世纪的科技进步与社会经济发展(上册).中国科学技术协会、浙江省人民政府: 中国科学技术协会学会学术部: 625-626. 黄俊, 衣俊, 程金平. 2014.长江口及近海水环境中新型污染物研究进展[J].环境化学, 33(9): 1484-1494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201409009 荆莹. 2012.明清时期汾河流域人地关系演变[C]//中国地理学会、河南省科学技术协会.中国地理学会2012年学术年会学术论文摘要集. [S.L.]: 中国地理学会: 82. 康艳. 2013.渭河流域人水和谐评价指标体系与方法研究[D].杨凌: 西北农林科技大学. 李爱华, 崔胜玉, 王红瑞, 等. 2017.基于GRACE卫星时变重力场模型的黄河中游地区水储量变化研究[J].自然资源学报, 32(3): 461-473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201703009 李宏杰, 戴福初, 许领, 等. 2008.地质灾害调查中ETM+与SPOT5 Pan影像融合与评价[J].国土资源遥感, (1): 43-45, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200801009 李吉均, 方小敏, 马海洲, 等. 1996.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑:地球科学), 4: 316-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600261329 李荣西, 安三元, 胡能高, 等. 1994.河南西峡二郎坪群变质岩岩石学及变质作用演化特征研究[J].西安工程学院学报, 3: 17-22. 李小建, 许家伟, 任星, 等. 2012.黄河沿岸人地关系与发展[J].人文地理, 27(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rwdl201201001 李晓英, 吴淑君, 蔡晨凯, 等. 2019.黄河流域陆地水储量时空变化[J].哈尔滨工程大学学报, 40(11): 1833-1838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201911005 李振洪, 宋闯, 余琛, 等. 2019.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报(信息科学版), 44(7): 967-979. 刘昌明. 2002.黄河流域水资源演化规律与可再生性维持机理研究进展[J].中国基础科学, 3: 24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjckx200203007 刘昌明. 2004.黄河流域水循环演变若干问题的研究[J].水科学进展, 15: 608-614. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200405013 刘东生, 安芷生, 文启忠, 等. 1978.中国黄土的地质环境[J].科学通报, (1): 1-9, 26. http://www.cnki.com.cn/Article/CJFDTotal-KXTB197801000.htm 刘东生, 张宗祜. 1962.中国的黄土[J].地质学报, 42 (1): 1-14, 106-109. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200707001 牛亚菲. 1999.青藏高原生态环境问题研究[J].地理科学进展, 18(2); 163-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz199902010 彭建兵, 林鸿州, 王启耀, 等. 2014.黄土地质灾害研究中的关键问题与创新思路[J].工程地质学报, 22(4): 684-691. doi: 10.13544/j.cnki.jeg.2014.04.014 彭建兵, 马润勇, 卢全中, 等. 2004.青藏高原隆升的地质灾害效应[J].地球科学进展, 3: 457-466. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200403018 彭建兵, 吴迪, 段钊, 等. 2016.典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J].西南交通大学学报, 51(5): 971-980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201605021 彭建兵. 2002a.黄河黑山峡地区区域地震动力学的非线性弹塑性三维有限元分析[J].工程地质学报, 10(S1):38-42. http://www.gcdz.org/article/id/10555 彭建兵. 2002b.黄河黑山峡地区区域地震动力学模式[J].工程地质学报, 10(S1):27-37. http://www.gcdz.org/article/id/10554 彭少明, 黄强, 张新海, 等. 2007.黄河流域水资源可持续利用多目标规划模型研究[J].河海大学学报(自然科学版), 2: 153-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hhdxxb200702008 钱会, 窦妍, 李西建, 等. 2007.都思兔河氢氧稳定同位素沿流程的变化及其对河水蒸发的指示[J].水文地质工程地质, 1: 107-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200701024 钱会, 李培月, 吴健华. 2010.银川市近49a来降雨变化特征分析[J].华北水利水电学院学报, 31(2): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbslsdxyxb201002001 邵明安, 上官周平. 2000.控制水土流失促进黄土高原生态环境建设[J].中国基础科学, (6): 47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001117777 沈怡, 赵世暹, 郑道隆. 1935.黄河年表[M].北京: 原军事委员会资源委员会. 苏人琼, 杨勤业. 1996.黄河流域灾害环境综合治理对策[J].人民黄河, 11: 16-20, 38, 62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99001985 孙才志, 陈光, 杨静, 等. 2004.山西省黄河流域地下水资源分布特征、开采潜力与用水对策分析[J].吉林大学学报(地球科学版), 3: 410-414. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200403017 孙建中. 2005.黄土学[M].香港: 香港考古学会. 孙书伟, 朱本珍, 谭冬生. 2008.黄土地区管道沿线填土边坡滑坡发生机理和防治对策[J].中国铁道科学, 4: 8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgtdkx200804002 唐朝晖, 柴波, 刘忠臣, 等. 2013.填土边坡稳定性的可靠度分析[J].地球科学(中国地质大学学报), 38(3): 616-624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013061700018785 王浩, 赵勇. 2019.新时期治黄方略初探[J].水利学报, 50(11): 1291-1298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201911001 王文科, 韩锦萍, 赵彦琦, 等. 2004a.银川平原水资源优化配置研究[J].资源科学, 2: 36-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200402006 王文科, 孔金玲, 段磊, 等. 2004b.黄河流域河水与地下水转化关系研究[J].中国科学E辑: 技术科学, S1: 23-33. 习近平. 2019.在黄河流域生态保护和高质量发展座谈会上的讲话[J].中国水利, 20: 1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggsl201920006 夏可慧, 李铭, 武弘麟. 2015.甘肃省区域发展进程中的人地关系研究[J].经济地理, 35(8): 40-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl201508006 杨红莲, 袭著革, 闫峻, 等. 2009.新型污染物及其生态和环境健康效应[J].生态毒理学报, 4(1): 28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj200901004 杨守业, 李从先. 1999.长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质, 2: 21-28. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz199902003 姚檀栋, 陈发虎, 崔鹏, 等. 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32 (9): 924-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=673341208 于瑞宏, 刘延玺, 刘国纬. 2011.黄河人水关系演变与调控[M].北京: 中国水利水电出版社. 张贡生. 2019.黄河经济带建设:意义、可行性及路径选择[J].经济问题, 7: 123-129. 张海敏, 牛玉国, 王丙轩, 等. 2004.黄河水资源问题与对策探讨[J].水文, 24(4): 26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sw200404007 张洁, 李同昇, 王武科. 2010a.渭河流域人地关系地域系统模拟[J].地理科学进展, 29(10): 1178-1184. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201010004 张洁, 李同昇, 王武科. 2010b.渭河流域人地关系地域系统耦合的关联分析[J].干旱区资源与环境, 24(7): 34-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201007006 张洁, 李同昇, 王武科. 2010c.渭河流域人地关系地域系统耦合状态分析[J].地理科学进展, 29(6): 733-739. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201006013 张宁宁, 粟晓玲, 周云哲, 等. 2019.黄河流域水资源承载力评价[J].自然资源学报, 34(8): 1759-1770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201908015 张信宝, 刘彧, 王世杰, 等. 2018.黄河、长江的形成演化及贯通时间[J].山地学报, 36(5): 661-668. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb201805001 张宗祜, 张之一, 施德鸿, 等. 1996.黄土高原区域环境地质问题及治理[M].北京: 科学出版社. 赵丹, 孙春燕, 陈春城, 等. 2009.新型污染物多溴联苯醚和氰尿酸的光化学降解[J].化学进展, 21(2): 400-405. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz200902014 朱日祥, 徐义刚. 2019.西太平洋板块俯冲与华北克拉通破坏[J].中国科学:地球科学, 49(9): 1346-1356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201909003 朱显谟. 1958.有关黄河中游土壤侵蚀区划问题[J].土壤通报, 1: 1-6. http://www.cnki.com.cn/Article/CJFDTotal-TRTB195801000.htm 朱照宇. 1989.黄河中游河流阶地的形成与水系演化[J].地理学报, 4: 429-440. http://www.cnki.com.cn/Article/CJFD1989-DLXB198904008.htm 庄福振, 罗平, 何清, 等. 2015.迁移学习研究进展[J].软件学报, 26 (1): 26-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjxb201501003 -