张根宝, 何仕林, 陈昌富, 等. 2023. 基于离散元的GFRP筋-水泥土界面黏结特性分析[J]. 工程地质学报, 31 (6): 2115-2124. doi: 10.13544/j.cnki.jeg.2021-0629.
    引用本文: 张根宝, 何仕林, 陈昌富, 等. 2023. 基于离散元的GFRP筋-水泥土界面黏结特性分析[J]. 工程地质学报, 31 (6): 2115-2124. doi: 10.13544/j.cnki.jeg.2021-0629.
    Zhang Genbao, He Shilin, Chen Changfu, et al. 2023. Discrete element method-based characterization of interface bond behavior of GFRP tendon embedded in cemented soils[J]. Journal of Engineering Geology, 31(6): 2115-2124. doi: 10.13544/j.cnki.jeg.2021-0629.
    Citation: Zhang Genbao, He Shilin, Chen Changfu, et al. 2023. Discrete element method-based characterization of interface bond behavior of GFRP tendon embedded in cemented soils[J]. Journal of Engineering Geology, 31(6): 2115-2124. doi: 10.13544/j.cnki.jeg.2021-0629.

    基于离散元的GFRP筋-水泥土界面黏结特性分析

    DISCRETE ELEMENT METHOD-BASED CHARACTERIZATION OF INTERFACE BOND BEHAVIOR OF GFRP TENDON EMBEDDED IN CEMENTED SOILS

    • 摘要: 加筋水泥土结构的承载性能取决于筋体-水泥土界面的黏结性能。为深入探究GFRP筋-水泥土界面黏结性能的发挥机制,采用国产矩阵离散元软件MatDEM对水泥土中GFRP筋拉拔试验进行了数值模拟。首先,将数值模拟得到的荷载-位移曲线与试验结果进行对比,验证了数值模型的可靠性;然后,通过模拟计算分析筋体-水泥土界面位移场演化、剪切带发展及胶结破坏演化规律,从细观上揭示了GFRP筋-水泥土界面黏结滑移机理;最后,通过参数分析研究了GFRP筋体肋形态特征对界面黏结滑移特性的影响规律。研究结果表明:(1)GFRP筋-水泥土界面黏结滑移全过程发生两次剪切破坏,当拉拔位移至4mm时发生第1次剪切破坏,当拉拔位移为10mm时发生第2次剪切破坏;(2)剪切带厚度与剪切颗粒数随拉拔位移的增加总体呈上升趋势,在拉拔初期上升趋势相对明显,随着界面滑移发展上升趋势逐渐减缓;(3)胶结破坏点随着拉拔位移的增加逐渐从界面处沿径向往两侧水泥土扩展,胶结破坏曲线与荷载-位移曲线都存在分段现象,且两者之间存在对应关系。(4)GFRP筋体的肋距主要影响界面荷载峰值和谷值对应的拉拔位移,肋高对界面荷载峰值和谷值显著影响,且在恒定肋距下,存在最优肋高可最大程度调动界面黏结强度。研究成果可以为加筋水泥土结构界面承载设计计算实践提供必要参考。

       

      Abstract: The load-bearing performance of the reinforced cement-soil structure depends on the interface bond behavior of the reinforcement embedded in cement soils. This paper aims to investigate the mobilization mechanism of interface bond strength between the GFRP tendon and cemented soils. The element pullout test of GFRP tendon embedded in cement soil is modeled numerically using domestic matrix discrete element software MatDEM. First, the load-displacement curve obtained by the numerical simulation is compared with the experimental results to validate the reliability of the numerical modelling. Second, the evolution of the displacement field of the reinforcement-soil interface, the development of the shear band, and the evolution of the cementation failure are interpreted to characterize the interface bond-slip behavior of GFRP tendon embedded in cemented soils from the microscopic view. Lastly, the impact of rib geometric features on the interface bond-slip behavior is studied in parametric sensitivity analysis. The concluded remarks are obtained in this work as follows.(1)The tendons-soil interface experiences shear failure twice in the pullout process of GFRP tendon embedded in cemented soils corresponding to the pullout displacement of 4mm and 10mm, respectively. (2)The thickness of shear band and the number of particles in shear condition increase along with the development of pullout displacement. But the increasing trend slows down over the increasing interface slip. (3)The cementation failure of particles develops from the interface to the neighboring cemented soils radially over the increase of pullout displacement, and in a stagewise trend corresponding to that of the pullout load-displacement response. (4)The magnitude of rib spacing affects the pullout displacement corresponding to each characterizing load. The magnitude of rib height affects the magnitude of each characterizing load. There is an optimal rib height for a constant rib spacing which can mobilize to the largest extent the interface bond strength. The findings in this work can provide insights to the design practice of load-bearing interface for the reinforced cement-soil structures.

       

    /

    返回文章
    返回