赵志强, 吴顺川, 张小强, 等. 2023. 岩体原位直剪试验声发射特征及破坏机理研究[J]. 工程地质学报, 31(6): 1901-1909. doi: 10.13544/j.cnki.jeg.2021-0631.
    引用本文: 赵志强, 吴顺川, 张小强, 等. 2023. 岩体原位直剪试验声发射特征及破坏机理研究[J]. 工程地质学报, 31(6): 1901-1909. doi: 10.13544/j.cnki.jeg.2021-0631.
    Zhao Zhiqiang, Wu Shunchuan, Zhang Xiaoqiang, et al. 2023. Acoustic emission characteristics and failure mechanism of rock mass with in-situ direct shear test[J]. Journal of Engineering Geology, 31(6): 1901-1909. doi: 10.13544/j.cnki.jeg.2021-0631.
    Citation: Zhao Zhiqiang, Wu Shunchuan, Zhang Xiaoqiang, et al. 2023. Acoustic emission characteristics and failure mechanism of rock mass with in-situ direct shear test[J]. Journal of Engineering Geology, 31(6): 1901-1909. doi: 10.13544/j.cnki.jeg.2021-0631.

    岩体原位直剪试验声发射特征及破坏机理研究

    ACOUSTIC EMISSION CHARACTERISTICS AND FAILURE MECHANISM OF ROCK MASS WITH IN-SITU DIRECT SHEAR TEST

    • 摘要: 声发射技术目前主要应用于小尺度岩石(≤10 cm)的破坏特征研究,但对大尺度岩石(≥70 cm)的破坏特征研究较少,大尺度岩石更接近工程实际,更能反映工程岩体的宏观特征。为探究大尺度岩石(≥70 cm)的裂隙分布、破坏过程和破裂机制的演化规律,在对软弱碳质黑云母片岩进行原位直剪试验时声监测声发射参数,并采用声发射参数分析、声发射波形分析、时频分析技术对声发射信号解析。分析发现:岩体的剪切破坏过程可分为3个阶段:(1)裂纹萌生(弹性变形)阶段,岩体中不存在或存在非常微弱的声发射事件。(2)裂纹扩展阶段,在岩体中观察到少量微裂纹并不断扩展,声发射事件累积,但总体数量较少。(3)破坏阶段,声发射事件显著增加,微裂纹继续扩展和贯通,直至形成宏观断裂。同时将基于振幅的统计指标b和基于r值的统计指标变异系数CV(r)值对比分析,表明CV(r)可以作为岩石断裂破坏强度的判据。本文研究结论如下:岩体受剪切荷载处首先出现声发射事件,随剪切荷载的增大新增的声发射事件逐渐前移,表明微破裂首先围绕在直剪试验岩体的受力部位附近。在岩体破坏阶段,微裂隙集中在局部区域,岩体产生应力集中现象。岩体声发射试验与直剪试验结合可应用于监测及预报工程岩体结构面动力剪切破坏行为特征,预测岩石破裂前兆并可作为现场直剪试验结果的相互验证的有利手段。

       

      Abstract: Acoustic Emission(AE)technology is mainly used in examing the failure characteristics of small-scale rocks(≤10 cm). However, there are few studies on the damage characteristics of large-scale rocks with regard to AE technology. Large-scale rocks(≥70 cm) are closer to engineering reality and can better reflect the true fracture state of engineering rock masses. In this study, we use in-situ direct shear experiment combined with AE technology and analyzes the AE signal of soft carbonaceous biotite schist using AE parameter analysis, AE waveform, and time-frequency analysis technology. The results of this study show the follows. First, the shear failure process of rock mass can be divided into the following three stages: (1)the crack initiation(elastic deformation) stage when there is no or very weak AE event in the rock mass, (2)the crack propagation stage when a small number of microcracks can be observed in the rock mass and continue to expand, and AE events accumulate, but the overall number is small, and (3)the destruction stage when AE events increase significantly, and microcracks continue to expand and penetrate until macroscopic fractures are formed. Second, we analyze the CV(r) value of the statistical indicator variation coefficient based on the r value and compared it with the b value based on amplitude statistics. We find that the results of CV(r) and b value have opposite feature. The conclusions of this study are the AE events appear firstly in the rock mass subjected to shear load, and the newly added AE events gradually move forward with the increase of shear load, which indicates that the micro-fractures first surround the force-bearing part of the direct shear test rock mass. In the stage of rock mass destruction, micro-cracks are concentrated in local areas, and the rock mass produces stress concentration. In the future, the combination of AE technology and direct shear test can be used to monitor and predict the dynamic shear failure behavior characteristics of engineering rock mass structural planes, predict rock failure precursors, and be used as a beneficial means for mutual verification of on-site direct shear test results.

       

    /

    返回文章
    返回