EMPIRICAL PREDICTION MODEL FOR MOVEMENT DISTANCE OF GULLY-TYPE ROCK AVALANCHES
-
摘要: 沟道型滑坡-碎屑流具有隐蔽性强、危险性高、力学机理复杂的特点,研究其运动距离预测模型具有重要的理论意义和实践意义。本文基于遥感GIS技术,结合野外调查,获取了汶川地震触发的38个沟道型滑坡-碎屑流的基础数据。通过相关性分析确定沟道型滑坡-碎屑流最大水平运动距离L的影响因素从大到小依次是滑坡体积V、最大垂直运动距离H、滑源区高差Hs、沟道段坡度β。采用逐步回归方法建立了滑坡-碎屑流最大水平运动距离L的最优多元回归模型,检验结果表明模型具有较高精度。将最优多元回归模型与国际上应用较多的滑坡运动距离和泥石流运动距离预测模型进行对比,表明考虑滑坡体积、地形落差和沟道段坡度的运动距离预测指标体系,具有最高的拟合优度和较好的物理含义,可为沟谷山区滑坡-碎屑流危险性评价提供参考依据。Abstract: Prediction model for movement distance of rock avalanches has important theoretical significance and practical significance due to the characteristic of difficult detection, complex mechanism and high risk of gully-type rock avalanches. This study selects 38 typical rock avalanches induced by Wenchuan earthquake, and obtains their basic data based on the remote sensing and GIS technology combining with field investigation. Through correlation analysis, the results indicate that the influence factors of the maximum horizontal movement distance of rock avalanches (L) are landslide volume (V), the maximum vertical movement distance H, the elevation difference of slip source area (Hs), and the mean slope angle of the lower channel (β). Then a stepwise regression method is adapted to build optimal multiple regression model for the prediction of L. The validation shows that the multiple regression model is suitable for predicting rock avalanche hazardous zones in Wenchuan earthquake areas. The optimal multiple regression model and other internationally common-used prediction models are compared for the movement distance of landslides and debris flows. The result indicates that the forecast index system is suitable for the rock avalanches risk assessment in mountainous areas. The system considers the volume, drop height, the mean slope of the channel, with better goodness of fit index and physical meaning.
-
Key words:
- Rock avalanche /
- Gully type /
- Movement distance /
- Stepwise regression /
- Forecast index system
-
表 1 用于滑坡-碎屑流运动距离预测模型构建的因子数据
Table 1. Data of various factors for establishment of prediction model of rock avalanche movement distance
序号 滑坡名称 行政区域 经度
/(°)纬度
/(°)滑坡面积
A/m2滑坡体积
V/m3滑源区
高差
Hs/m斜坡段
坡度
α/(°)沟道段
坡度
β/(°)最大垂直
运动距离
Hmax/m最大水平
运动距离
Lmax/m1 文家沟 绵竹 104.140 31.552 3000566 50000000* 440 26 7 1320 4000 2 水磨沟 什邡 103.981 31.442 915608 19959932 490 35 10 860 2000 3 大屋基 安县 104.196 31.702 792190 16326032 540 29 13 880 1900 4 东河口 青川 105.113 32.410 1283627 15000000* 240 25 11 640 2400 5 红石沟 安县 104.130 31.624 687520 13410911 290 37 17 1040 2700 6 窝前 青川 104.964 32.308 695672 12000000* 330 30 10 560 1600 7 肖家山 绵竹 104.038 31.465 465899 7814385 480 48 24 930 1350 8 牛眠沟 汶川 103.456 31.044 527700 7500000* 320 32 13 800 2640 9 立起沟 江油 105.207 32.169 355113 5360623 360 37 12 650 1500 10 草槽坪 安县 104.139 31.607 354046 5338279 345 31 17 580 1340 11 火石沟 安县 104.134 31.616 322155 4682742 270 38 17 700 1320 12 石板沟村 青川 105.090 32.419 496983 4500000* 450 34 9 650 1800 13 谢家店子 彭州 103.841 31.298 294256 4000000* 400 34 15 720 1600 14 大水沟 都江堰 103.675 31.199 241874 3145769 320 30 17 560 1400 15 长坪 彭州 103.754 31.259 224645 2839115 290 37 16 500 1200 16 小木岭 绵竹 104.102 31.613 218704 2735439 175 45 26 710 1025 17 柏树岭 北川 104.385 31.807 208968 2567895 335 36 20 620 1200 18 大湾 北川 104.536 31.907 203959 2482853 220 28 20 480 1000 19 曾家山 绵竹 104.182 31.486 198165 2385499 340 44 20 650 1135 20 石凑子 平武 104.918 32.243 169540 1921037 260 30 26 640 1200 21 长滩 绵竹 104.133 31.508 151094 1637197 400 33 25 1050 1650 22 红麻公 青川 104.962 32.301 144683 1541570 195 30 14 330 800 23 白果村 青川 105.088 32.385 139800 1469843 165 26 12 260 800 24 青龙村 青川 105.036 32.342 134079 1387013 90 21 11 200 600 25 彭家山 北川 104.546 31.930 127156 1288622 200 33 28 580 1000 26 龙湾村 北川 104.571 31.922 99821 920924 205 31 28 460 860 27 张正波 青川 105.017 32.333 99726 919717 125 29 15 320 800 28 杜家岩 青川 105.028 32.336 94769 856882 100 33 17 400 880 29 麻地坪 青川 104.996 32.355 94632 855159 140 27 31 395 740 30 岩碉窝 青川 105.099 32.391 92128 823909 145 30 26 390 800 31 窗子沟 绵竹 104.085 31.518 91717 818816 185 35 15 295 670 32 赵家山 青川 105.041 32.342 82329 704840 115 22 16 280 700 33 围子坪 青川 105.083 32.387 74661 615400 135 22 18 240 600 34 毛虫山2# 平武 104.908 32.243 70251 565535 160 38 22 500 740 35 瓦前山 青川 105.049 32.376 70007 562808 135 24 18 250 620 36 木红坪 青川 104.982 32.291 68288 543718 175 28 20 420 970 37 大坪上 北川 104.542 31.889 65700 515331 160 34 29 365 640 38 柳树坪2# 青川 105.054 32.365 54810 400724 150 29 16 240 580 上标符号“*”表示滑坡体积数据许强(2009)中的野外调查结果 表 2 滑坡碎屑流特征参数相关性分析结果
Table 2. Correlation analysis results for rock avalanches
V α β Hs H H 0.713 0.429 (-0.130) 0.801 1 L 0.866 (0.082) -0.467 0.675 0.857 括号表示这两个因子在显著性水平0.05条件下显著不相关 表 3 滑坡-碎屑流多元回归模型检验结果
Table 3. Background parameters of 4 rock avalanches used for validation
滑坡名称 经度 纬度 V
/×104m3α
/(°)β
/(°)Hs
/mH
/mL
/mL′(5)
/m误差
/%L′(6)
/m误差
/%北川偏桥子 104°22′12.48″E 31°49′19.16″N 8.8 35 19 153 205 372 436 17.2 373 0.3 北川杨家岩 104°19′42.24″E 31°45′16.34″N 25.4 41 23 164 304 518 583 12.5 518 0.1 汶川杉树林 103°30′27.87″E 31°10′50.74″N 27.9 34 25 340 433 715 731 2.3 660 -7.6 汶川福烟沟 103°30′02.13″E 31°25′17.39″N 71.9 38 28 385 530 763 869 13.8 900 17.9 L′(5)代表式(5) 的计算值;L′(6)代表式(6) 的计算值 -
Du J, Yin K L, Wang J J. 2015. Simulation of three-dimensional movement of landslide-bebris flow based on finite volume method[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (3):480~488. http://www.rockmech.org/EN/abstract/abstract28892.shtml Fan X Y, Qiao J P, Han M, et al. 2012. Volumes and movement distances of earthquake and rainfall-induced catastrophic landslides[J]. Rock and Soil Mechanics, 33 (10):3051~3058. https://www.researchgate.net/publication/281666074_Volumes_and_movement_distances_of_earthquake_and_rainfall-induced_catastrophic_landslides Fan X Y, Leng X Y, Duan X D. 2015. Influence of topographical factors on movement distances of toe-type and turning-type landslides triggered by earthquake[J]. Rock and Soil Mechanics, 36 (5):1380~1388. https://www.researchgate.net/publication/282273888_Influence_of_topographical_factors_on_movement_distances_of_toe-type_and_turning-type_landslides_triggered_by_earthquake Finlay P J, Mostyn G R, Fell R. 1999. Landslide risk assessment:prediction of travel distance[J]. Canadian Geotechnical Journal, 36 (3):556~562. doi: 10.1139/t99-012 Gao H X. 2000. Some method on treating the collinearity of independent variables in multiple linear regression[J]. Application of Statistics and Management, 20 (5):49~55. Helm A. 1932. Bergsturz und Menschenleben. Fretz & Wasmuth, Ziirich[J]. Landslides and Human Lives:218. http://ngzh.ch/archiv/1932_77/77_BB20/77BB20_2.pdf Huang H Q, Zhao Q H. 2010. Basic characteristics and preliminary mechanism analysis of large scale rockslide -sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 18 (2):168~177. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201002003.htm Hungr O, McDougall S. 2009. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences, 35 (5):978~992. doi: 10.1016/j.cageo.2007.12.003 Li X Z, Kong J M. 2010. Runout distance estimation of landslides triggered by"5·12"Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 42 (5):243~249. https://www.researchgate.net/publication/289661120_Runout_distance_estimation_of_landslides_triggered_by_512_Wenchuan_earthquake?_sg=MLO2G1vKTIvNdvZ4UyzbI2Ay-MWaWqdwzOvpTrW34PhRIv7a4rh6reHVxmPkfEvrfg_qgi9TxcQJ9tqdJBgQ0Q Li Y, Huang R Q, Zhou R J, et al. 2009. Geological background of Longmen Shan seismic belt and surface ruptures in Wenchuan earthquake[J]. Journal of Engineering Geology, 17 (1):3~18. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200901003.htm Lied K, Bakkehøi S. 1980. Empirical calculations of snow-avalanche run-out distance based on topographic parameters[J]. Journal of Glaciology, 26 (94):165~177. doi: 10.1017/S0022143000010704 Lo C M, Lin M L, Tang C L, et al. 2011. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 123 (1-2):22~39. doi: 10.1016/j.enggeo.2011.07.002 Lorente A, Beguerua S, Garcia-Ruiz J M. 2003. Flow characteristics and relationships in the central Spanish Pyrenees[J]. Natural Hazards and Earth System Sciences, 3:683~692. doi: 10.5194/nhess-3-683-2003 Pan J Z. 1980. Stability against sliding of constructions and landslide analyses[M]. Beijing:China Water Power Press:1~238. Parker R N, Densmore A L, Rosser N J, et al. 2011. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth[J]. Nature Geoscience, 4 (7):449~452. doi: 10.1038/ngeo1154 Pastor M, Haddad B, Sorbino G, et al. 2009. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for numerical and analytical methods in geomechanics, 33 (2):143~172. doi: 10.1002/nag.v33:2 Sassa K. 1988. Geotechnical model for the motion of landslides[C]//AA Balkema. Proceedings of the 5th International Symposium on Landslide. Rotterdam:[s.n.]:37~55. Scheidegger A E. 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics and Rock Engineering, 5 (4):231~236. doi: 10.1007/bf01301796.pdf Sun P, Zhang Y S, Yin Y P, et al. 2009. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology, 17 (6):737~744. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200906002.htm Wang Y, Sui S L. 2014. Mathematical Statistics and Data Analysis using MATLAB Software[M]. Beijing:Tsinghua University Press:1~362. Wu F Y, Fan Y Y, Liang L, et al. 2013. Simulation analysis of landslide motion process based on the dynamic slice method[J]. Journal of Sichuan University (Engineering Science Edition), 45 (S1):7~12. https://www.researchgate.net/publication/282932172_Simulation_analysis_of_landslide_motion_process_based_on_the_dynamic_slice_method Xu Q, Pei X J, Huang R Q. 2009. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press:1~473. Yu H Y, Wang D, Yang Y Q, et al. 2009. The preliminary analysis of strong ground motion records from the MS8.0 Wenchuan Earthquake[J]. Journal of earthquake engineering and engineering vibration, 29 (1):1~13. Zhang M, Yin Y P, Wu S R, et al. 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18 (6):805~817. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201006001.htm 杜娟, 殷坤龙, 王佳佳. 2015.基于有限体积法的滑坡-碎屑流三维运动过程模拟分析[J].岩石力学与工程学报, 34 (3):480~488. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503006.htm 樊晓一, 乔建平, 韩萌, 等. 2012.灾难性地震和降雨滑坡的体积与运动距离研究[J].岩土力学, 33 (10):3051~3058. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210030.htm 樊晓一, 冷晓玉, 段晓冬. 2015.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学, 36 (5):1380~1388. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505022.htm 高惠璇. 2000.处理多元线性回归中自变量共线性的几种方法--SAS/STAT软件(6.12) 中REG等过程增强功能的使用[J].数理统计与管理, 20 (5):49~55. http://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ200005012.htm 黄河清, 赵其华. 2010.汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J].工程地质学报, 18 (2):168~177. http://www.gcdz.org/CN/abstract/abstract8529.shtml 李秀珍, 孔纪名. 2010. "5·12"汶川地震诱发滑坡的滑动距离预测[J].四川大学学报(工程科学版), 42 (5):243~249. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005037.htm 李勇, 黄润秋, 周荣军, 等. 2009.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报, 17 (1):3~18. http://www.gcdz.org/CN/abstract/abstract8398.shtml 潘家铮. 1980.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社:1~238. 孙萍, 张永双, 殷跃平, 等. 2009.东河口滑坡-碎屑流高速远程运移机制探讨[J].工程地质学报, 17 (6):737~744. http://www.gcdz.org/CN/abstract/abstract8484.shtml 王岩, 隋思涟. 2014.数理统计与MATLAB数据分析[M].北京:清华大学出版社:1~362. 吴凤元, 樊赟赟, 梁力, 等. 2013.基于动力条分法的滑坡运动过程模拟分析[J].四川大学学报(工程科学版), 45 (S1):7~12. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2013S1003.htm 许强, 裴向军, 黄润秋, 等. 2009.汶川地震大型滑坡研究[M].北京:科学出版社:1~473. 于海英, 王栋, 杨永强, 等. 2009.汶川8.0级地震强震动加速度记录的初步分析[J].地震工程与工程振动, 29 (1):1~13. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200901000.htm 张明, 殷跃平, 吴树仁, 等. 2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报, 18 (6):805~817. http://www.gcdz.org/CN/abstract/abstract8730.shtml -