沟道型滑坡-碎屑流运动距离经验预测模型研究

詹威威 黄润秋 裴向军 李为乐

詹威威, 黄润秋, 裴向军, 李为乐. 2017: 沟道型滑坡-碎屑流运动距离经验预测模型研究. 工程地质学报, 25(1): 154-163. doi: 10.13544/j.cnki.jeg.2017.01.021
引用本文: 詹威威, 黄润秋, 裴向军, 李为乐. 2017: 沟道型滑坡-碎屑流运动距离经验预测模型研究. 工程地质学报, 25(1): 154-163. doi: 10.13544/j.cnki.jeg.2017.01.021
ZHAN Weiwei, HUANG Runqiu, PEI Xiangjun, LI Weile. 2017: EMPIRICAL PREDICTION MODEL FOR MOVEMENT DISTANCE OF GULLY-TYPE ROCK AVALANCHES. JOURNAL OF ENGINEERING GEOLOGY, 25(1): 154-163. doi: 10.13544/j.cnki.jeg.2017.01.021
Citation: ZHAN Weiwei, HUANG Runqiu, PEI Xiangjun, LI Weile. 2017: EMPIRICAL PREDICTION MODEL FOR MOVEMENT DISTANCE OF GULLY-TYPE ROCK AVALANCHES. JOURNAL OF ENGINEERING GEOLOGY, 25(1): 154-163. doi: 10.13544/j.cnki.jeg.2017.01.021

沟道型滑坡-碎屑流运动距离经验预测模型研究

doi: 10.13544/j.cnki.jeg.2017.01.021
基金项目: 

国家重点基础研究发展计划项目 2014CB74470

交通部科技项目 2014-215

四川省科技厅科技支撑计划项目 2013FZ0009

成都理工大学中青年骨干教师培养计划资助 JXGG201507

详细信息
    作者简介:

    詹威威(1992-), 男, 博士生, 研究方向为地质灾害研究与防治.Email:zhanweiwei132@163.com

  • 中图分类号: P642.22

EMPIRICAL PREDICTION MODEL FOR MOVEMENT DISTANCE OF GULLY-TYPE ROCK AVALANCHES

  • 摘要: 沟道型滑坡-碎屑流具有隐蔽性强、危险性高、力学机理复杂的特点,研究其运动距离预测模型具有重要的理论意义和实践意义。本文基于遥感GIS技术,结合野外调查,获取了汶川地震触发的38个沟道型滑坡-碎屑流的基础数据。通过相关性分析确定沟道型滑坡-碎屑流最大水平运动距离L的影响因素从大到小依次是滑坡体积V、最大垂直运动距离H、滑源区高差Hs、沟道段坡度β。采用逐步回归方法建立了滑坡-碎屑流最大水平运动距离L的最优多元回归模型,检验结果表明模型具有较高精度。将最优多元回归模型与国际上应用较多的滑坡运动距离和泥石流运动距离预测模型进行对比,表明考虑滑坡体积、地形落差和沟道段坡度的运动距离预测指标体系,具有最高的拟合优度和较好的物理含义,可为沟谷山区滑坡-碎屑流危险性评价提供参考依据。
  • 图  1  汶川地震典型沟道型滑坡-碎屑流分布图

    Figure  1.  Distribution map of large-scale rock avalanches triggered by Wenchuan earthquake

    图  2  典型沟道型滑坡-碎屑流遥感影像图

    a.长滩; b.老鹰岩

    Figure  2.  Remote sensing images of typical rock avalanches

    图  3  典型沟道型滑坡-碎屑流的示意图

    Figure  3.  Sketch map of typical gully-type rock avalanche

    图  4  汶川地震滑坡-碎屑流最大垂直运动距离和滑源区高差的相关关系

    Figure  4.  Relationship between H and Hs for 38 rock avalanches induced by Wenchuan earthquake

    图  5  汶川地震滑坡-碎屑流最大垂直运动距离和滑坡体积的相关关系

    Figure  5.  Relationship between H and V for 38 rock avalanches induced by Wenchuan earthquake

    图  6  汶川地震滑坡-碎屑流最大水平运动距离和滑坡体积的相关关系

    Figure  6.  Relationship between L and V for 38 rock avalanches induced by Wenchuan earthquake

    图  7  汶川地震滑坡-碎屑流最大水平运动距离和最大垂直运动距离的相关关系

    Figure  7.  Relationship between L and H for 38 rock avalanches induced by Wenchuan earthquake

    图  8  式(5)、式(6) 计算值与实际值L的比较

    Figure  8.  Comparison between calculated values using formula (5)、(6) and actual L value

    表  1  用于滑坡-碎屑流运动距离预测模型构建的因子数据

    Table  1.   Data of various factors for establishment of prediction model of rock avalanche movement distance

    序号滑坡名称行政区域经度
    /(°)
    纬度
    /(°)
    滑坡面积
    A/m2
    滑坡体积
    V/m3
    滑源区
    高差
    Hs/m
    斜坡段
    坡度
    α/(°)
    沟道段
    坡度
    β/(°)
    最大垂直
    运动距离
    Hmax/m
    最大水平
    运动距离
    Lmax/m
    1文家沟绵竹104.14031.552300056650000000*44026713204000
    2水磨沟什邡103.98131.4429156081995993249035108602000
    3大屋基安县104.19631.7027921901632603254029138801900
    4东河口青川105.11332.410128362715000000*24025116402400
    5红石沟安县104.13031.62468752013410911290371710402700
    6窝前青川104.96432.30869567212000000*33030105601600
    7肖家山绵竹104.03831.465465899781438548048249301350
    8牛眠沟汶川103.45631.0445277007500000*32032138002640
    9立起沟江油105.20732.169355113536062336037126501500
    10草槽坪安县104.13931.607354046533827934531175801340
    11火石沟安县104.13431.616322155468274227038177001320
    12石板沟村青川105.09032.4194969834500000*4503496501800
    13谢家店子彭州103.84131.2982942564000000*40034157201600
    14大水沟都江堰103.67531.199241874314576932030175601400
    15长坪彭州103.75431.259224645283911529037165001200
    16小木岭绵竹104.10231.613218704273543917545267101025
    17柏树岭北川104.38531.807208968256789533536206201200
    18大湾北川104.53631.907203959248285322028204801000
    19曾家山绵竹104.18231.486198165238549934044206501135
    20石凑子平武104.91832.243169540192103726030266401200
    21长滩绵竹104.13331.5081510941637197400332510501650
    22红麻公青川104.96232.30114468315415701953014330800
    23白果村青川105.08832.38513980014698431652612260800
    24青龙村青川105.03632.3421340791387013902111200600
    25彭家山北川104.54631.930127156128862220033285801000
    26龙湾村北川104.57131.922998219209242053128460860
    27张正波青川105.01732.333997269197171252915320800
    28杜家岩青川105.02832.336947698568821003317400880
    29麻地坪青川104.99632.355946328551591402731395740
    30岩碉窝青川105.09932.391921288239091453026390800
    31窗子沟绵竹104.08531.518917178188161853515295670
    32赵家山青川105.04132.342823297048401152216280700
    33围子坪青川105.08332.387746616154001352218240600
    34毛虫山2#平武104.90832.243702515655351603822500740
    35瓦前山青川105.04932.376700075628081352418250620
    36木红坪青川104.98232.291682885437181752820420970
    37大坪上北川104.54231.889657005153311603429365640
    38柳树坪2#青川105.05432.365548104007241502916240580
    上标符号“*”表示滑坡体积数据许强(2009)中的野外调查结果
    下载: 导出CSV

    表  2  滑坡碎屑流特征参数相关性分析结果

    Table  2.   Correlation analysis results for rock avalanches

    VαβHsH
    H0.7130.429(-0.130)0.8011
    L0.866(0.082)-0.4670.6750.857
    括号表示这两个因子在显著性水平0.05条件下显著不相关
    下载: 导出CSV

    表  3  滑坡-碎屑流多元回归模型检验结果

    Table  3.   Background parameters of 4 rock avalanches used for validation

    滑坡名称经度纬度V
    /×104m3
    α
    /(°)
    β
    /(°)
    Hs
    /m
    H
    /m
    L
    /m
    L′(5)
    /m
    误差
    /%
    L′(6)
    /m
    误差
    /%
    北川偏桥子104°22′12.48″E31°49′19.16″N8.8351915320537243617.23730.3
    北川杨家岩104°19′42.24″E31°45′16.34″N25.4412316430451858312.55180.1
    汶川杉树林103°30′27.87″E31°10′50.74″N27.934253404337157312.3660-7.6
    汶川福烟沟103°30′02.13″E31°25′17.39″N71.9382838553076386913.890017.9
    L(5)代表式(5) 的计算值;L(6)代表式(6) 的计算值
    下载: 导出CSV
  • Du J, Yin K L, Wang J J. 2015. Simulation of three-dimensional movement of landslide-bebris flow based on finite volume method[J]. Chinese Journal of Rock Mechanics and Engineering, 34 (3):480~488. http://www.rockmech.org/EN/abstract/abstract28892.shtml
    Fan X Y, Qiao J P, Han M, et al. 2012. Volumes and movement distances of earthquake and rainfall-induced catastrophic landslides[J]. Rock and Soil Mechanics, 33 (10):3051~3058. https://www.researchgate.net/publication/281666074_Volumes_and_movement_distances_of_earthquake_and_rainfall-induced_catastrophic_landslides
    Fan X Y, Leng X Y, Duan X D. 2015. Influence of topographical factors on movement distances of toe-type and turning-type landslides triggered by earthquake[J]. Rock and Soil Mechanics, 36 (5):1380~1388. https://www.researchgate.net/publication/282273888_Influence_of_topographical_factors_on_movement_distances_of_toe-type_and_turning-type_landslides_triggered_by_earthquake
    Finlay P J, Mostyn G R, Fell R. 1999. Landslide risk assessment:prediction of travel distance[J]. Canadian Geotechnical Journal, 36 (3):556~562. doi: 10.1139/t99-012
    Gao H X. 2000. Some method on treating the collinearity of independent variables in multiple linear regression[J]. Application of Statistics and Management, 20 (5):49~55.
    Helm A. 1932. Bergsturz und Menschenleben. Fretz & Wasmuth, Ziirich[J]. Landslides and Human Lives:218. http://ngzh.ch/archiv/1932_77/77_BB20/77BB20_2.pdf
    Huang H Q, Zhao Q H. 2010. Basic characteristics and preliminary mechanism analysis of large scale rockslide -sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 18 (2):168~177. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201002003.htm
    Hungr O, McDougall S. 2009. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences, 35 (5):978~992. doi: 10.1016/j.cageo.2007.12.003
    Li X Z, Kong J M. 2010. Runout distance estimation of landslides triggered by"5·12"Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 42 (5):243~249. https://www.researchgate.net/publication/289661120_Runout_distance_estimation_of_landslides_triggered_by_512_Wenchuan_earthquake?_sg=MLO2G1vKTIvNdvZ4UyzbI2Ay-MWaWqdwzOvpTrW34PhRIv7a4rh6reHVxmPkfEvrfg_qgi9TxcQJ9tqdJBgQ0Q
    Li Y, Huang R Q, Zhou R J, et al. 2009. Geological background of Longmen Shan seismic belt and surface ruptures in Wenchuan earthquake[J]. Journal of Engineering Geology, 17 (1):3~18. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200901003.htm
    Lied K, Bakkehøi S. 1980. Empirical calculations of snow-avalanche run-out distance based on topographic parameters[J]. Journal of Glaciology, 26 (94):165~177. doi: 10.1017/S0022143000010704
    Lo C M, Lin M L, Tang C L, et al. 2011. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 123 (1-2):22~39. doi: 10.1016/j.enggeo.2011.07.002
    Lorente A, Beguerua S, Garcia-Ruiz J M. 2003. Flow characteristics and relationships in the central Spanish Pyrenees[J]. Natural Hazards and Earth System Sciences, 3:683~692. doi: 10.5194/nhess-3-683-2003
    Pan J Z. 1980. Stability against sliding of constructions and landslide analyses[M]. Beijing:China Water Power Press:1~238.
    Parker R N, Densmore A L, Rosser N J, et al. 2011. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth[J]. Nature Geoscience, 4 (7):449~452. doi: 10.1038/ngeo1154
    Pastor M, Haddad B, Sorbino G, et al. 2009. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for numerical and analytical methods in geomechanics, 33 (2):143~172. doi: 10.1002/nag.v33:2
    Sassa K. 1988. Geotechnical model for the motion of landslides[C]//AA Balkema. Proceedings of the 5th International Symposium on Landslide. Rotterdam:[s.n.]:37~55.
    Scheidegger A E. 1973. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics and Rock Engineering, 5 (4):231~236. doi: 10.1007/bf01301796.pdf
    Sun P, Zhang Y S, Yin Y P, et al. 2009. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology, 17 (6):737~744. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200906002.htm
    Wang Y, Sui S L. 2014. Mathematical Statistics and Data Analysis using MATLAB Software[M]. Beijing:Tsinghua University Press:1~362.
    Wu F Y, Fan Y Y, Liang L, et al. 2013. Simulation analysis of landslide motion process based on the dynamic slice method[J]. Journal of Sichuan University (Engineering Science Edition), 45 (S1):7~12. https://www.researchgate.net/publication/282932172_Simulation_analysis_of_landslide_motion_process_based_on_the_dynamic_slice_method
    Xu Q, Pei X J, Huang R Q. 2009. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing:Science Press:1~473.
    Yu H Y, Wang D, Yang Y Q, et al. 2009. The preliminary analysis of strong ground motion records from the MS8.0 Wenchuan Earthquake[J]. Journal of earthquake engineering and engineering vibration, 29 (1):1~13.
    Zhang M, Yin Y P, Wu S R, et al. 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18 (6):805~817. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201006001.htm
    杜娟, 殷坤龙, 王佳佳. 2015.基于有限体积法的滑坡-碎屑流三维运动过程模拟分析[J].岩石力学与工程学报, 34 (3):480~488. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503006.htm
    樊晓一, 乔建平, 韩萌, 等. 2012.灾难性地震和降雨滑坡的体积与运动距离研究[J].岩土力学, 33 (10):3051~3058. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210030.htm
    樊晓一, 冷晓玉, 段晓冬. 2015.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学, 36 (5):1380~1388. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505022.htm
    高惠璇. 2000.处理多元线性回归中自变量共线性的几种方法--SAS/STAT软件(6.12) 中REG等过程增强功能的使用[J].数理统计与管理, 20 (5):49~55. http://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ200005012.htm
    黄河清, 赵其华. 2010.汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J].工程地质学报, 18 (2):168~177. http://www.gcdz.org/CN/abstract/abstract8529.shtml
    李秀珍, 孔纪名. 2010. "5·12"汶川地震诱发滑坡的滑动距离预测[J].四川大学学报(工程科学版), 42 (5):243~249. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005037.htm
    李勇, 黄润秋, 周荣军, 等. 2009.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报, 17 (1):3~18. http://www.gcdz.org/CN/abstract/abstract8398.shtml
    潘家铮. 1980.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社:1~238.
    孙萍, 张永双, 殷跃平, 等. 2009.东河口滑坡-碎屑流高速远程运移机制探讨[J].工程地质学报, 17 (6):737~744. http://www.gcdz.org/CN/abstract/abstract8484.shtml
    王岩, 隋思涟. 2014.数理统计与MATLAB数据分析[M].北京:清华大学出版社:1~362.
    吴凤元, 樊赟赟, 梁力, 等. 2013.基于动力条分法的滑坡运动过程模拟分析[J].四川大学学报(工程科学版), 45 (S1):7~12. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2013S1003.htm
    许强, 裴向军, 黄润秋, 等. 2009.汶川地震大型滑坡研究[M].北京:科学出版社:1~473.
    于海英, 王栋, 杨永强, 等. 2009.汶川8.0级地震强震动加速度记录的初步分析[J].地震工程与工程振动, 29 (1):1~13. http://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200901000.htm
    张明, 殷跃平, 吴树仁, 等. 2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报, 18 (6):805~817. http://www.gcdz.org/CN/abstract/abstract8730.shtml
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  3349
  • HTML全文浏览量:  476
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-10
  • 修回日期:  2016-06-02
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回